TRIAL-EXAM
Software Engineering using Formal Methods
TDA293 (TDA292) / DIT270

Extra aid: Only dictionaries may be used. Other aids are not allowed!

Please observe the following:

This exam has 15 numbered pages, plus two pages of the Spin Reference Card.
Please check immediately that your copy is complete

Answers must be given in English

Use page numbering on your pages

Start every assignment on a fresh page

Write clearly; unreadable = wrong!

Fewer points are given for unnecessarily complicated solutions

Indicate clearly when you make assumptions that are not given in the assignment

Good luck!

Exam/Tenta SEFM 2

Assignment 1 PROMELA (13p)

The task is to model a simplified version of the TicTacToe game in PROMELA. Tic-
TacToe is a two player game which is played on a 3 x 3 board as shown below:

0 (1 |2
3 145
6 |7 |8

(The numbers suggest how to represent the board by a simple array of size 9.)

The game is played turn-by-turn. The player whose turn it is, selects an empty field
and marks it with her unique id.

We use here a simplified winning condition: the player who manages to mark one of the
two diagonals completely (i.e., all fields belonging to that diagonal) with her unique id
wins the game.

The game is over if either one of the players has won or if there is no empty field left
which belongs to one of the diagonals and none of the diagonals is owned by one of the
two players. In the latter case, we call the game to be a draw.

(a) Modeling TicTacToe in PROMELA.
Below you find a skeleton model of a TicTacToe game modelled in PROMELA:

/* message type */
mtype = {move, donel}
/* board */

byte board[9];

/* channel to communicate with referee. The second parameter holds the
player’s process id */
chan ch = [0] of {mtype, byte}l};

/* variable that is 0 if game is ongoing, _pid if player _pid has won,
255 if game is a draw */
byte over = 0;

proctype player() { /* to be filled in */ }
proctype referee() { /* to be filled in */ }

/* Initialises and starts the players and referee. Ensures that the
* first player has _pid 1 and the second player has _pid 2 x/
init {

run player ();

run player ();

run referee ()

3

The PROMELA model realizes the playfield as a global variable called board, a byte
array of size 9. Initially all components of the board have the value 0.

Exam/Tenta SEFM 3

The message type mtype is defined to consist of the two values move and done. Further,
there are two global variables called (i) ch of type chan which is used for the com-
munication between the referee and the players; (ii) over of type byte which indicates
whether the game is still ongoing (over is 0), or one player has won (over carries that
player’s process id), or the game is a draw (over has is 255).

The process init initializes the game with two players and one referee.

Your task is now to provide an implementation for the player and referee process ac-
cording to the following description:

Player: For as long as over is 0, the player does the following over and over again:

1.

Wait for the referee to inform her that it is her move (by sending a message
containing move and this player’s process id).

. Select non-deterministically a free field (a field is free if its value is 0).

. Store her process id in that field.

Informs the referee that this turn is completed, by sending the message done
together with her process id.

Afterwards, the player prints “Game Over!” and terminates.

Referee:

1.

Initially the referee starts the game by giving the turn to the first player. A turn is
assigned to a player by sending the message move followed by the player’s process
id via the channel ch.

. The referee then waits for the player to finish her turn.

. Upon receiving that the player has finished the turn, the referee checks if this

player has won the game (i.e., if the player has marked one of the two diagonals
completely with her process id). If that is the case, the referee sets the global
variable over to the player’s id and the referee process terminates. Otherwise the
referee continues with step 4.

The referee checks now if it is a draw, if that is not the case, it hands the turn
over to the other player by sending the move message followed by the corresponding
process id of the player. The referee continues then with step 2.

. Otherwise, it is a draw. The variable over is set to 255 and the referee process

terminates.

Solution

Remark to correctors: Check if idx is reset to zero each time before a new field is
chosen.

Exam/Tenta SEFM

mtype = {move, done}
byte board[9];
chan ch = [0] of {mtype, byte}l};
byte over = 0;
proctype player () {
byte idx;
do
:: over != 0 -> break

ch ? move, eval(_pid);
/* choose field non-deterministically x/

idx = 0;
do
idx < 8 -> idx++
break
od;
/* set player’s mark at next free fieldx*/
do
:: board[idx] == 0
->
board[idx] = _pid; ch ! done, _pid; break
else
->
idx = (idx + 1) % 9
od
od;
printf("Player%dysaysygood-bye", _pid)

3

proctype referee() {

byte playerId;

ch ! move, 1;
do
: ch 7 done, playerId;
if
:: board[4] !'= 0 &&
((board[0] == board[4] && board[4] == boardI[8]) ||
(board [2] == board[4] && board[4] == board[6]))
->
over = board[4];
printf("Player_ %d_ won.", board[4]); break
else

->

Exam/Tenta SEFM

if

fi
fi
od;

(board [0] =

board [6]

->

ch ! move, (playerId == 1 -> 2 : 1);

printf("Next move_by,player, %d",
(playerId == 1 -> 2 : 1))

0 || board[2] =
(O]

0 || boardI[4]
board [8 0

)

else

->

over = 255;
printf("Draw.");
break

printf("Game_ Over!")

3

init {
run player ();
run player ();
run referee ()

}

Exam/Tenta SEFM

Assignment 2 Linear Temporal Logic (LTL)

Tell for each formula whether it is valid or not.
(Each question is worth 1 point, except question 7., which is worth 2 points. Missing
answers get no points, wrong answers get -1 point. Still, you will never get a negative

total for this assignment.)

N A R

Up — Op

Op — Up

HOp — OUp

OUp — UOp

OpVq) = ~0(=pV —q)
H=0p — —p

(Op Vv Oq) = (B-q — Op)

Solution
[1+1+1+1+1+1+2]

1.

NS G e

valid
not valid
not valid
valid
not valid
valid

valid

Exam/Tenta SEFM

Assignment 3 (Biichi Automata and Model Checking) (9p)

(a)

[3p]
Consider the following Biichi automaton.

study

Give the w-expression describing the language accepted by this automaton.
Solution
(register (study)* (pass + (fail (study)* pass))~

[2p]
The following Biichi automaton does not exactly accept the runs that satisfy
the LTL formula $Up:

{}

Demonstrate this mismatch, by giving a run which is accepted by the automa-
ton and not by the LTL formula, or vice-versa.

Solution

The Biichi automaton rejects the following run, though it satisfies the LTL

formula: {p},{}, {p}, {p}. {p}, {p}.- ..

[2p]

Give an LTL formula that is satisfied exactly by accepted runs of the automa-
ton from (b).

Solution

—pULp

Exam/Tenta SEFM

(d) [2p]

The Biichi automaton from (b) requires just a small modification to accept
exactly those runs satisfying OUp. Give this modified automaton.

Solution

{1, {p}

L {r} @D 0

Exam/Tenta SEFM 9

Assignment 4 (First-Order Sequent Calculus) (10p)

We work here in untyped first-order logic with the trivial type T, which is omitted in
the formulas below.

Let p denote a predicate of arity 2 and ¢, d be constant symbols. Prove that the following
first-order logic formula is valid using the first-order sequent calculus. For each step
name the rule you have applied and for the quantification rules also the side-conditions
like substitution or introduction.

You are only allowed to use the calculus rules presented in the lectures.

Your task is to build a proof for the following sequent:

Va; Vy; (p(z,y) — —p(y, 7)),

Vs Vy; Vz; ((p(w,y) Aply, 2)) — plx, 2)),
p(c,d) =

VZ; (p(d, z) — _'p(zv C))

Hint: You may abbreviate formulas, but only if you clearly describe your abbreviations.

Solution

1. apply allRight to succedent formula introduce new constant z

2. instantiate transitivity formula in antecedent by successive application of 3 allLeft
rules instantiating with d, 2o, ¢ subsequently

impRight on formula in succedent
notRight on formula in succedent

impLeft on formula in antecedent

& s W

two subgoals

(a) first subgoal: apply andRight on formula in succedent; the two created subgoal
can be closed immediately by applications of the close rule

(b) second subgoal: instantiate antisymmetry formula by applying allLeft twice
subsequently with d,c. Apply implLeft: Two goals opened: first apply close
rule, second: apply notlLeft followed by close

Exam/Tenta SEFM

10

Assignment 5 (Java Modeling Language)

Consider the class Hashtable:
public class Hashtable {

private Object[] h;
private int capacity;
private int size = 0;

Hashtable (int capacity) {
h = new Object[capacity];
this.capacity = capacity;

}

/*@ public normal_behavior
@ requires val > 0;
@ ensures \result >= 0 && \result =< capacity;
Qx/

private int hash_function (int val) { }

public void add (Object obj, int key) {
if (size < capacity) {
int i = hash_function(key);
if (h[i] == null) {

h[i] = obj;
sizet+;

}

else {

while (h([i] !'= null){

if (i == capacity-1) {i = 0;} else {i++;}

}
h[i] = obj;
size++;
}
return;
} else
throw new FullHashtableException();

Exam/Tenta SEFM 11

This class represents an open addressing hash table with linear probing as collision
resolution. Within a hash table, objects are stored into a fixed array h. Besides, in
order to have an easy way of checking whether or not the capacity of h is reached (i.e.
the array h is full), a field size keeps track of the number of stored objects and a field
capacity represents the total amount of objects that can be added to the hash table.

The method add, which is used to add objects to the hash table, first tries to put
the corresponding object at the position of the computed hash code. However, if that
index is occupied, then add searches upwards (modulo the array length) for the nearest
following index which is free. A position is considered free if and only if it contains a
null object.

Augment class Hashtable with JML specification stating the following:

e The size field is never negative, and always < capacity.

e The capacity should be the same value as h.length.

e The array h cannot be null.

e There should be space for at least one element in the hash table.

e The number of elements stored in array h (i.e., the number of array cells whose
content is not null) is size.

o If the size is strictly smaller than capacity, then all of the following must hold:

— add terminates normally
— add increases size by one

— After add(obj,key), the object obj is stored in h at some index 1i.

e If the size has reached capacity, add will throw an FullHashtableException,
and the state does not change.

In addition:

e Write assignable clauses where appropriate.

e Add JML modifiers where necessary.

Solution

public class Hashtable {

// Open addressing Hashtable with linear probing
// as collision resolution.

/*@ invariant h != null;
Q

Exam/Tenta SEFM

@ invariant h.length == capacity;

@

@ invariant capacity > O;

@

@ invariant size >= 0 && size <= capacity;

@

@ invariant

@ (\sum int i; 0 <= i && i < capacity && h[i] != null; 1) == size;
Qx/

private /*Q@ spec_public nullable @*/ Object[] h;
private /*Q spec_public @*/ int capacity;
private /*Q spec_public @*/ int size = 0;

// Specifying the constructor was not required
/*@ public normal_behaviour

0@ ensures this.capacity == capacity;
@ ensures size == 0;

@ assignable h[*], capacity, size;
Qx/

Hashtable (int capacity) {
h = new Object[capacity];
this.capacity = capacity;

}

/*@ public normal_behaviour
@ requires val > O;
Q@ ensures \result >= 0 && \result < capacity;
Qx/
private /*Q@ pure @*/ int hash_function (int val) {

// Add an element to the hashtable.

/*@ public normal_behaviour

requires size < capacity && key > O;

ensures size == \old(size)+1;

ensures (\exists int i; i>= 0 && i < capacity; h[i] == obj);
assignable size, h[x];

also

public exceptional_behaviour
requires size == capacity && key > O;
signals_only FullHashtableException;
assignable \nothing;

©@ © 0 o0 oo oo o

Exam/Tenta SEFM 13

ex/
public void add (Object obj, int key) {
if (size < capacity) {
int i = hash_function(key);

if (h[i] == null) {

h[i] = obj;
size++;

+

else {

while (h[i] !'= null){
if (i == capacity-1) {i = 0;} else {i++;}

}
h[i] = obj;
sizet+;

}

return;

} else
throw new FullHashtableException();

Exam/Tenta SEFM 14

Assignment 6 (Loop-Invariant) (4p)

Consider the following Arrays class with utility methods for copying portions of int
arrays from some source array src to some destination array dest. The top level
method arrayCopy is capable of copying data even within the same array (when src ==
dest) in which case the data is first copied from the source region to a temporary array
and then from the temporary array to the destination region. This way data corruption
is avoided when the two regions overlap. The private helper method arrayCopyHelper
works under the assumption that the provided arrays are non-null and different by
reference, and that all other data (offsets and number of elements to be copied) is well-
defined. This is reflected in the method’s precondition. Note that the postcondition
specification for arrayCopyHelper does not use the \old operator, because the source
array will never be overwritten by this method. This is not the case for the top-level
method arrayCopy, where the src array may change after the method is finished (when
src == dest).

public class Arrays {

private static /*@ spec_public ©@x/ IllegalArgumentException iae =
new IllegalArgumentException();

/*@ public normal_behavior

Q@ requires numElems >= O;
requires src != null && dest != null;
requires srcOffset >= 0 && destOffset >= 0;
requires srcOffset + numElems <= src.length;
requires destOffset + numElems <= dest.length;
ensures (\forall int i; i >= 0 && i < numElems;

dest [destOffset + i] == \old(srcl[srcOffset + il]));
assignable dest[*];

also

public exceptional_behavior
requires src == null || dest == null || numElems < O ||
srcOffset < O || destOffset < O ||
srcOffset + numElems > src.length ||
destOffset + numElems > dest.length;
signals_only IllegalArgumentException;
assignable \nothing;

© 0 0o o0ooooooo®O®o®O B O

@x/
public void arrayCopy(/*@ nullable @/ int[] src, int srcOffset,
/*@ nullable ©*/ int[] dest, int destOffset,
int numElems) throws IllegalArgumentException {
if(src == null || dest == null || numElems < 0 ||
srcOffset < 0 || destOffset < 0 ||
srcOffset + numElems > src.length ||
destOffset + numElems > dest.length) {
throw iae;

3

Exam/Tenta SEFM 15

if(src == dest) {

int[] temp = new int[numElems];
arrayCopyHelper(src, srcOffset, temp, O, numElems);
arrayCopyHelper(temp, O, dest, destOffset, numElems);

} else {
arrayCopyHelper(src, srcOffset, dest, destOffset, numElems);
}
}
/%@
@ public normal_behavior
@ requires numElems >= 0;
@ requires src != dest;
Q requires srcOffset >= 0 && destOffset >= 0;
@ requires srcOffset + numElems <= src.length;
Q requires destOffset + numElems <= dest.length;
@ ensures (\forall int i; i >= 0 && i < numElems;
Q dest[destOffset + i] == src[srcOffset + i]);
@ assignable dest[*];
@x/

private void arrayCopyHelper(int[] src, int srcOffset,

int[] dest, int destOffset,
int numElems) {

int i = 0;
while(i < numElems) {

dest [destOffset + i] = srcl[srcOffset + il;

Assignments:

Provide a strong enough loop invariant, variant (decreases clause), and
assignable clause for the loop in the arrayCopyHelper method, so that the
postcondition of this method is provable.

Solution 4pt

/*@ loop_invariant i >= 0 && i <= numElems &&
Q (\forall int j; j >= 0 && j < 1i;
Q dest [destOffset + j] == srclsrcOffset + jl);
@ decreases numElems - i;
@ assignable i, dest[*];
Qx*/

(total 56p)

=< < = >
<< >>

- +

YA / *

-— ++ - i
d O

(32udpadaad Surpuddsap) siojerdadQ

*SJUWIILD [0} PaUTISSe anJeA [eNIul Aelly
[onrea [enmur =] [N]rea 2d4) - uonere[oop Aeiry
"019Z I SaNn[eA [enIul J[nejdq

[ongea rentur =] rea od4) - uoneIr[Aq

{ suonereoop jo souanbes } owreuodAy yepsdLa
(suq) { - ‘owreu ‘owreu } = edfqu
ueyd
ptd

“QUIYORW Q-7 ¢ B I0] -
(pauStsun $11q , 7€ >) peuStsun
(pauss s11q , 7€) Ut
(pauss s11q ,9[) 210YS
(pougisun sjiq §) @24q
(1q 1) To0q
(1) 319
sadSyeyeq

VSN ‘S01+6 “BIUIOHN[RD ‘0dSIOURI]
ueg “100[YI§ 19a1§ pIBMOH ¢H§ ‘SUOWIWOD) dANBAID 0] I3NJ[B PuUas (q) ‘10 /0
+g/es-ou-£q/s9suedTT /310 SUOUWOD9ATIRDID//:d34Y JISIA ‘DSUDI] SIY) JO
£doo® MaIA O, *aSUIIT ()¢ MI[VAIRYS-[RIDIOWWIOOUON-UONNQLN]Y SUOWWIOD) AR

-91D) A JOpUN PISUDI] ST YIom SIY, LIy-uag (NOJA) TeyddpIoIA £q £00T WSuLdo)

LOOT ‘T 1290100

HY-udg (NOJN) 1eYI3PIOJN

pIe) Q0UdIJY urdg

"G-69.-829%8-T1-8.6/Wo0 * 108utads - nun//:daay
"800¢ ‘1o3uridg

Uayoay)) 1apo wids ayp Jo sapdiouild CIIy-udg N e
‘mwods - qooxutds//:daay
$00T ‘KIS -UOSIPPY ‘IDNUDIY 20U212[2Y

pup 12ullig 12323y 12po uidg 2y "UURWZ[OH [D e

SIIUIIIYAY

‘paredau oq jouued TTNnI pue Ladwe suonouny yJ, e

"Aelre ue surejuod jey) FopadAa e oq ued 11 {Aelire
ue 9q jouued [QUUEYD © Jo p[oy oSessow € Jo adK) oy, e
"$91AQ UI PaI0}s oIk T00q IO 1T JO SABITY e

‘suoIssaIdxa pan[ea-uea[ooq Joj S[OqUIAS IO SI[qeLIeA
uBa[00q 2q JSNW PUB SIS ASLIIMO] M Funels sioy
-uapI 2q Jsnw senwoj 11 ur suonisodoid orwoly e

“IOPIO O[T UI SIP PUB PAJBATIOR IB SISSAV0I] ®

“JuouwIale)s SUTMOT[OF o) pue pIens e uoom)
-9q 1250 UBd SUTABO[IIUI JUOWIE)S Op IO JT U U] e

‘pIensd e 910Joq J0u ‘Op JO FT UE 2J0Joq S[oqe[dJe[d ®
-ad0os mou © 918aId J0U OP SUTTUT PUR SOIOBIA ®
*9s[e} QJe SIAYIO [[B JI A[UO PIJOJIs
SI pIen3 STe UE {PIJI[as 9q SABM[E UBD pIens onIl y e
'ssoo01d e Jo Suruurd
-9q 9} Je 1091J0 ae) SAeM[e SUONBIB[OIP S[qELIBA [BD0T] ®

*991J J09J9-9pIS 9q 1SN SUOIssadxy o

sjeaAe))

saye)s pua pifeaut jo Suntodar ssaxddns q-
suone[orA uonasse jo Suniodar ssaxddns V-

SOLOUS J[QE) Uysey , T NM-
N st y3dop yoreos wnwirxew N

J0119 0} ped 1s9110yS J0J yoreas ojewrxoidde I-
Jo11d 0) yyed)sayI0ys J0J yoreas T-

SIOLIQ [[e JOJ S[Ie) 9JeaId o-

s1o11d [[e odar Qo-

Jorrd YN Joye dois No-

S9[0A0 ssaroid-uou puy T-

ssourrej yeom J-

SO[0A0 oourldaooe puy e-
sjuowngie ugq

AKrowour Jo sajAqedowr N oy dnasn N=WITWINd-
S91AQ U WNWIXLW PIM VI POZIWUTUI U=yNa-
uorssaxdwod joedwoo-ysey OHQ-
uorssaxdwos asde[joo ASJVTI0Dd-

Sumysey aeIsIq FIVISLILA-

Kyayes 103 azmundo ALAIVSA-
S9[0Ad ssa13o1d-uou Jo uond9lap [qeud dNQ-

(0Ie9s ISIY-YIpealq S49a-
sjudwmgie apidwo))

SIUQAQ puas Aefdsip s-
SJUQAQ 9AIO0QI Aefdstp I-
sjuowdie)s Aerdstp d-
so[qeLreA [eqo[3 Aedstp 8-
So[qeLIeA [ed0[Ae[dsIp I-

9l B WOIJ WIB[D JIOAQU JpN[oul N-
wIre[O I9AQU B OJUI J[Y B UL B[AWLIOJ T[T Ue dje[sueny J-
wire[o I9AQU B OJUI B[NULIOJ]/ UB 9Je[suen) J-

N st sdojs Jo Joquinu wnwirxew Nn-

[TeD) YIN YIIAM UoTR[nWIsS paping N3-

[Ten iIm uone[nUIs papms -

UOTJR[NWITS WOPURI I0J PI3s NU-

Surssooordoid 19y wes3oid eowoig Aedsip 1-

uone[NWIIS 9AORIIUI -

OoUD XBIUAS pUB JIOYLIOA 9jeIouad e-
sjudwmgie urdg

91Ty s- I- 8- 1- d- 3- utds
F- ®- ued/- 10 3- e- ued
o-ued uwed o- 258
9TTI ®©- utds

ISSOUQAI']

(... => ... : ...) conditional expression

Predefined
Constants - true, false
Variables (read-only except _):
_ - write-only hidden scratch variable
_nr_pr - number of processes
_pid - instantiation number of executing process
timeout - no executable statements in the system?

Preprocessor

#define name (arguments) string

#undef, #if, #ifdef, #ifndef, #else, #endif
#include "file name”

inline name (arguments) { ... }

Statements
Assignment - var = expression, var++, var--
assert(expression)

printf, printm - print to standard output
%c (character), %d (decimal), %e (mtype),
%o (octal), %u (unsigned), %x (hex)
scanf - read from standard input in simulation mode

skip - no operation
break - exit from innermost do loop
goto - jump to label
Label prefixes with a special meaning:
accept - accept cycle
end - valid end state
progress - non-progress cycle

atomic { ... } - execute without interleaving

d_step { ... } - execute deterministically (no jumping in or
out; deterministic choice among true guards; only the first
statement can block).

{ ... }unless { ... } - exception handling.

Guarded commands

else guard - executed if all others are false.

Processes
Declaration - proctype procname (parameters) { ... }
Activate with prefixes - active or active[N]
Explicit process activation - run procname (arguments)
Initial process - init { ... }
Declaration suffixes:

priority - set simulation priority

provided (e) - executable only if expression e is true

Channels
chan ch = [capacity] of { type, type, ... }

ch ! args send

ch !! args sorted send

ch ? args receive and remove if first message matches
ch 7? args receive and remove if any message matches

ch ? <args> receive if first message matches
ch 7?7 <args> receive if any message matches
ch ? [args] poll first message (side-effect free)
ch ?? [args] poll any message (side-effect free)

Matching in a receive statement: constants and mtype
symbols must match; variables are assigned the values in
the message; eval(expression) forces a match with the
current value of the expression.

len(ch) - number of messages in a channel
empty(ch) / nempty(ch) - is channel empty / not empty?
full(ch) /nfull(ch) - is channel full / not full?

Channel use assertions:
xr ch - channel ch is receive-only in this process
xs ch - channel ch is send-only in this process

Temporal logic

! not
&& and
[l or
-> implies
<=> equivalent to

[1 always

<> eventually

X next

U strong until

V dual of U defined as pvq <-> ! (!pU!q)

Remote references

Test the control state or the value of a variable:
process-name @ label-name
proctype-name [expression] @ label-name
process-name : label-name
proctype-name [expression] : label-name

Never claim

never { ... }.

Predefined constructs that can only appear in a never claim:
_last - last process to execute
enabled(p) - is process enabled?
np_ - true if no process is at a progress label
pc_value(p) - current control state of process
remote references

See also trace and notrace.

Variable declaration prefixes

hidden - hide this variable from the system state

local - a global variable is accessed only by one process
show - track variable in Xspin message sequence charts

Verification
Safety:
spin -a file
gcc -DSAFETY -o pan pan.c
panor ./pan
spin -t -p -1 -g -r -s file

