
Lecture
Models of Computation

(DIT310, TDA184)

Nils Anders Danielsson

2016-11-14



Today

𝜒, a small functional language:
▶ Concrete and abstract syntax.
▶ Operational semantics.
▶ Several variants of the halting problem.
▶ Representing inductively defined sets.



Concrete
syntax



Concrete syntax

e ∷= x
∣ (e1 e2)
∣ 𝜆x . e
∣ c(e1, …, e𝑛)
∣ case e of {c1(x1, …, x𝑛) → e1; …}
∣ rec x = e

Variables (x ) and constructors (c) are assumed to
come from two disjoint, countably infinite sets.

Sometimes extra parentheses are used, and
sometimes parentheses are omitted around
applications: e1 e2 e3 means ((e1 e2) e3).



Examples

𝜒 Haskell
𝜆x . e \x -> e
True() True
Succ(n) Succ n
Cons(x , xs) x : xs
rec x = e let x = e in x

Note: Haskell is typed and non-strict, 𝜒 is untyped
and strict.



Another example

𝜒:

case e of {Zero() → x ; Succ(n) → y }

Haskell:

case e of
Zero -> x
Succ n -> y



And two more

rec add = 𝜆m. 𝜆n. case n of
{Zero() → m
; Succ(n) → Succ(add m n)
}

𝜆m. rec add = 𝜆n. case n of
{Zero() → m
; Succ(n) → Succ(add n)
}



What is the value of the following
expression?

(rec foo = 𝜆m. 𝜆n. case n of {
Zero() → m;
Succ(n) → case m of {
Zero() → Zero();
Succ(m) → foo m n }})

Succ(Succ(Zero())) Succ(Zero())

▶ Zero()
▶ Succ(Zero())

▶ Succ(Succ(Zero()))
▶ Succ(Succ(Succ(Zero())))



Abstract
syntax



Abstract syntax

x ∈ Var

var x ∈ Exp

e1 ∈ Exp e2 ∈ Exp

apply e1 e2 ∈ Exp

x ∈ Var e ∈ Exp

lambda x e ∈ Exp

x ∈ Var e ∈ Exp

rec x e ∈ Exp

Var : Assumed to be countably infinite.



Abstract syntax

c ∈ Const es ∈ List Exp

const c es ∈ Exp

e ∈ Exp bs ∈ List Br

case e bs ∈ Exp

c ∈ Const xs ∈ List Var e ∈ Exp

branch c xs e ∈ Br

Const : Assumed to be countably infinite.



Operational
semantics



Operational semantics

▶ The binary relation ⇓ relates closed expressions.
▶ An expression is closed if it has

no free variables.
▶ e ⇓ v : e terminates with the value v .



Quiz

Which of the following expressions are
closed?

▶ y

▶ 𝜆x . 𝜆y . x
▶ case x of {Cons(x , xs) → x }
▶ case Succ(Zero()) of {Succ(x ) → x }
▶ rec f = 𝜆x . f



Operational semantics (1/3)

lambda x e ⇓ lambda x e

e1 ⇓ lambda x e e2 ⇓ v2 e [x ← v2 ] ⇓ v

apply e1 e2 ⇓ v

e [x ← rec x e ] ⇓ v

rec x e ⇓ v



Substitution

▶ e [x ← e′ ]: Substitute e′ for every free
occurrence of x in e.

▶ To keep things simple: e′ must be closed.
▶ If e′ is not closed, then this definition is prone

to variable capture.



Substitution

var x [x ← e′ ] = e′

var y [x ← e′ ] = var y if x ≠ y

apply e1 e2 [x ← e′ ] =
apply (e1 [x ← e′ ]) (e2 [x ← e′ ])

lambda x e [x ← e′ ] = lambda x e
lambda y e [x ← e′ ] =

lambda y (e [x ← e′ ]) if x ≠ y

And so on…



Quiz

What is the result of

(rec y = case x of {c() → x ; d(x ) → x }) [x ← 𝜆z . z ]?

▶ rec y = case x of {c() → x ; d(x ) → x }
▶ rec y = case x of {c() → x ; d(x ) → 𝜆z . z }
▶ rec y = case 𝜆z . z of {c() → 𝜆z . z ; d(x ) → x }
▶ rec y = case 𝜆z . z of {c() → 𝜆z . z ; d(𝜆z . z ) → x }
▶ rec y = case 𝜆z . z of {c() → 𝜆z . z ; d(x ) → 𝜆z . z }



Operational semantics (2/3)

es ⇓⋆ vs

const c es ⇓ const c vs

nil ⇓⋆ nil

e ⇓ v es ⇓⋆ vs

cons e es ⇓⋆ cons v vs



An example

lambda x (var x ) ⇓
lambda x (var x )

nil ⇓⋆ nil

const c nil ⇓
const c nil

nil ⇓⋆ nil

var x [x ← const c nil] ⇓
const c nil

apply (lambda x (var x )) (const c nil) ⇓ const c nil



Operational semantics (3/3)

e ⇓ const c vs Lookup c bs xs e′

e′ [xs ← vs ] ↦ e″ e″ ⇓ v

case e bs ⇓ v



Operational semantics (3/3)

e ⇓ const c vs Lookup c bs xs e′

e′ [xs ← vs ] ↦ e″ e″ ⇓ v

case e bs ⇓ v

The first matching branch, if any:

Lookup c (cons (branch c xs e) bs) xs e

c ≠ c′ Lookup c bs xs e

Lookup c (cons (branch c′ xs′ e′) bs) xs e



Operational semantics (3/3)

e ⇓ const c vs Lookup c bs xs e′

e′ [xs ← vs ] ↦ e″ e″ ⇓ v

case e bs ⇓ v

e [xs ← vs ] ↦ e′ holds iff
▶ there is some n such that
xs = cons x1 (…(cons x𝑛 nil)) and
vs = cons v1 (…(cons v𝑛 nil)), and

▶ e′ = ((e [x𝑛 ← v𝑛 ])…) [x1 ← v1 ].



Operational semantics (3/3)

e ⇓ const c vs Lookup c bs xs e′

e′ [xs ← vs ] ↦ e″ e″ ⇓ v

case e bs ⇓ v

e [nil ← nil] ↦ e

e [xs ← vs ] ↦ e′

e [cons x xs ← cons v vs ] ↦ e′ [x ← v ]



Quiz

Which of the following sets are inhabited?
▶ case c() of {c() → d(); c() → c()} ⇓ c()
▶ case c() of {c() → d(); c() → c()} ⇓ d()
▶ case c() of {c(x ) → d(); c() → d()} ⇓ d()
▶ case Succ(False()) of

{Zero() → True(); Succ(n) → n } ⇓ False()
▶ case Succ(False()) of

{Zero() → True(); Succ() → False()}
⇓ False()



Some
properties



Deterministic

The semantics is deterministic:
e ⇓ v1 and e ⇓ v2 imply v1 = v2.



Values

▶ An expression e is called a value if e ⇓ e.
▶ Values can be characterised inductively:

Value (lambda x e)
Values es

Value (const c es)

Values nil

Value e Values es

Value (cons e es)
▶ Value e holds iff e ⇓ e.
▶ If e ⇓ v , then Value v .



There is a non-terminating expression
▶ The following program does not terminate:
rec x (var x ).

▶ Recall the rule for rec:
e [x ← rec x e ] ⇓ v

rec x e ⇓ v
.

▶ Note that
var x [x ← rec x (var x )] = rec x (var x ).

▶ Idea:

rec x (var x ) →
var x [x ← rec x (var x )] =
rec x (var x ) →
⋮



There is a non-terminating expression

▶ If the program did terminate, then there would
be a finite derivation of the following form:

⋮
rec x (var x ) ⇓ v

rec x (var x ) ⇓ v

rec x (var x ) ⇓ v

▶ Exercise: Prove more formally that this is
impossible, using induction on the structure of
the semantics.



The halting
problem



The extensional halting problem

There is no closed expression halts such that,
for every closed expression p,

▶ halts (𝜆x . p) ⇓ True(), if p terminates, and
▶ halts (𝜆x . p) ⇓ False(), otherwise.



The extensional halting problem

▶ Assume that halts can be defined.
▶ Define terminv ∈ Exp → Exp:

terminv p = case halts (𝜆x . p) of
{True() → rec x = x
; False() → Zero()
}

▶ For any closed expression p:
terminv p terminates iff p does not terminate.



The extensional halting problem

▶ Now consider the closed expression strange
defined by rec p = terminv p.

▶ We get a contradiction:

(∃v . strange ⇓ v) ⇔
(∃v . rec p = terminv p ⇓ v) ⇔
(∃v . terminv p [p ← strange ] ⇓ v) ⇔
(∃v . terminv strange ⇓ v) ⇔
¬ (∃v . strange ⇓ v)



The extensional halting problem

▶ Note that we apply halts to a program,
not to the source code of a program.

▶ How can source code be represented?



Representing
inductively
defined sets



Natural numbers
One method:

▶ Notation: ⌜ n ⌝ ∈ Exp represents n ∈ ℕ.
▶ Representation:

⌜ zero ⌝ = Zero()
⌜ suc n ⌝ = Succ(⌜ n ⌝)

▶ Note that the concrete syntax should be
interpreted as abstract syntax:

⌜ zero ⌝ = const Zero nil
⌜ suc n ⌝ = const Succ (cons ⌜ n ⌝ nil)

(For some distinct Zero, Succ ∈ Const .)



Natural numbers
One method:

▶ Notation: ⌜ n ⌝ ∈ Exp represents n ∈ ℕ.
▶ Representation:

⌜ zero ⌝ = Zero()
⌜ suc n ⌝ = Succ(⌜ n ⌝)

▶ Note that the concrete syntax should be
interpreted as abstract syntax:

⌜ zero ⌝ = const Zero nil
⌜ suc n ⌝ = const Succ (cons ⌜ n ⌝ nil)

(For some distinct Zero, Succ ∈ Const .)



Lists

If elements in A can be represented, then elements
in List A can also be represented:

⌜ nil ⌝ = Nil()
⌜ cons x xs ⌝ = Cons(⌜ x ⌝, ⌜ xs ⌝)

Many inductively defined sets can be represented
using constructor trees in analogous ways.



Variables, constants

▶ Var : Countably infinite.
▶ Thus each variable x ∈ Var can be assigned a

unique natural number n ∈ ℕ.
▶ Define ⌜ x ⌝ = ⌜ n ⌝.
▶ Similarly for constants.



Source code

⌜ var x ⌝ = Var(⌜ x ⌝)
⌜ apply e1 e2 ⌝ = Apply(⌜ e1 ⌝, ⌜ e2 ⌝)
⌜ lambda x e ⌝ = Lambda(⌜ x ⌝, ⌜ e ⌝)
⌜ rec x e ⌝ = Rec(⌜ x ⌝, ⌜ e ⌝)
⌜ const c es ⌝ = Const(⌜ c ⌝, ⌜ es ⌝)
⌜ case e bs ⌝ = Case(⌜ e ⌝, ⌜ bs ⌝)
⌜ branch c xs e ⌝ = Branch(⌜ c ⌝, ⌜ xs ⌝, ⌜ e ⌝)



Example
▶ Concrete syntax: 𝜆x . Succ(x ).
▶ Abstract syntax:

lambda x (const Succ (cons (var x ) nil))
(for some x ∈ Var and Succ ∈ Const).

▶ Representation (concrete syntax):
Lambda(⌜ x ⌝,

Const(⌜ Succ ⌝,Cons(Var(⌜ x ⌝),Nil())))
▶ If x and Succ both correspond to zero:

Lambda(Zero(),
Const(Zero(),

Cons(Var(Zero()),Nil())))



Example
Representation (abstract syntax):

const Lambda (
cons (const Zero nil) (
cons (const Const (

cons (const Zero nil) (
cons (const Cons (

cons (const Var (cons (const Zero nil) nil)) (
cons (const Nil nil)
nil)))

nil)))
nil))



Quiz

How is rec x = x represented?
Assume that x corresponds to 1.

▶ Rec(X(),X())
▶ Rec(X(),Var(X()))
▶ Equals(Rec(X()),X())
▶ Rec(Succ(Zero()), Succ(Zero()))
▶ Rec(Succ(Zero()),Var(Succ(Zero())))
▶ Equals(Rec(Succ(Zero())), Succ(Zero()))



The halting
problem,
take two



The intensional halting problem
(with self-application)

There is no closed expression halts such that,
for every closed expression p,

▶ halts ⌜ p ⌝ ⇓ True(), if p ⌜ p ⌝ terminates, and
▶ halts ⌜ p ⌝ ⇓ False(), otherwise.



With self-application
▶ Assume that halts can be defined.
▶ Define the closed expression terminv :

terminv = 𝜆p. case halts p of
{True() → rec x = x
; False() → Zero()
}

▶ For any closed expression p:
terminv ⌜ p ⌝ terminates iff
p ⌜ p ⌝ does not terminate.

▶ Thus terminv ⌜ terminv ⌝ terminates iff
terminv ⌜ terminv ⌝ does not terminate.



The intensional halting problem

There is no closed expression halts such that,
for every closed expression p,

▶ halts ⌜ p ⌝ ⇓ True(), if p terminates, and
▶ halts ⌜ p ⌝ ⇓ False(), otherwise.



The intensional halting problem

▶ Assume that halts can be defined.
▶ If we can use halts to solve the previous variant

of the halting problem, then we have found a
contradiction.



The intensional halting problem

▶ Exercise:
Define a closed expression code satisfying:

▶ For any closed expression p,
code ⌜ p ⌝ ⇓ ⌜ ⌜ p ⌝ ⌝.

▶ Define the closed expression halts′ by
𝜆p. halts Apply(p, code p).



The intensional halting problem

For any closed expression p:

p ⌜ p ⌝ terminates ⇒
halts ⌜ p ⌜ p ⌝ ⌝ ⇓ True() ⇒
halts Apply(⌜ p ⌝, ⌜ ⌜ p ⌝ ⌝) ⇓ True() ⇒
halts Apply(⌜ p ⌝, code ⌜ p ⌝) ⇓ True() ⇒
halts′ ⌜ p ⌝ ⇓ True()



The intensional halting problem

For any closed expression p:

p ⌜ p ⌝ does not terminate ⇒
halts ⌜ p ⌜ p ⌝ ⌝ ⇓ False() ⇒
halts Apply(⌜ p ⌝, ⌜ ⌜ p ⌝ ⌝) ⇓ False() ⇒
halts Apply(⌜ p ⌝, code ⌜ p ⌝) ⇓ False() ⇒
halts′ ⌜ p ⌝ ⇓ False()

Thus halts′ solves the previous variant of the halting
problem, and we have found a contradiction.



Summary

▶ Concrete and abstract syntax.
▶ Operational semantics.
▶ Several variants of the halting problem.
▶ Representing inductively defined sets.


	Introduction
	Concrete syntax
	Abstract syntax
	Operational semantics
	Some properties
	The halting problem
	Representing inductively defined sets
	The halting problem, take two
	Summary

