Nils Anders Danielsson

2016-10-31

Can every function be implemented?

» No (given some assumptions).
» This lecture: Two proofs (sketches).

See the course web page.

Comparing
sets sizes

» Definition: f: A — B is injective if
Ve, y: A. fa= fyimplies x = y.

» If there is an injection from A to B,
then B is at least as “large” as A.

Surjections

» Definition: f: A — B is surjective if
Vb:B.da:A. fa=0.

» If there is a surjection from A to B,
then there is an injection from B to A
(assuming the axiom of choice).

» Thus, if there is a surjection from A to B,
then A is at least as “large” as B.

Left/right inverses

For functions f: A - B, g: B — A:
» Definition: g is a left inverse of f if
Va: A. g(fa)=a.
» Definition: g is a right inverse of f if
Vb: B. f(gb) =b.
» If f has a left inverse, then it is injective.
» If f has a right inverse, then it is surjective.

Bijections

» Definition: f: A — B is bijective if
it is both injective and surjective.

» A function is bijective iff
it has a left and right inverse.

» If there is a bijection from A to B,
then A and B have the same “size”.

Quiz

Which of the following functions are
injective? Surjective?

» f:N—=N, fn=n+1
»g: 24— 7, g1 =1+ 1.
true, if n is even,

» h: N — Bool, hn =)
false, otherwise.

Respond at http://pingo.upb.de/,
using a code that | provide.

http://pingo.upb.de/

Countable,
uncountable

Countable sets

» A is countable if there is
an injection from A to N.

» If there is no such injection,
then A is uncountable.

» A is countably infinite if there is
a bijection from A to N.

Countable sets

» There is an injection from A to B iff
A = () or there is a surjection from B to A
(assuming the axiom of choice).

» Thus A is countable iff
A = () or there is a surjection from N to A.

» Yes.

» No.

If A is countable, then List A is countable.

Proof sketch:
» We are given an injection f: A — N,
» Define g : List A — N by

g (1, 2Tq,....;x,) =
21+f351 31+fx2 “_pTlLJFfﬂ’?n,

where p,, is the n-th prime number.

» By the fundamental theorem of arithmetic and
the injectivity of f we get that g is injective.

» Is every set countable?
» No.

» Diagonalisation can be used to show that
certain sets are uncountable.

N — N is uncountable

Proof (using the axiom of choice):
» Assume that N — N is countable.
» The set is non-empty, so we get a surjection
f:N—(N—=N).
» Defineg:N—=Nbygn=jfnn+1.
» By surjectivity we get that g = f ¢ for some 2.
» Thus fi2 =gt = fi1+4+ 1, which is impossible.

The function g differs from every function
enumerated by f on the “diagonal”:

0 1 2 3
fol+1
f1 +1
f2 +1
+1

f3

Not every function is computable

Proof sketch (classical):

» The set of programs of a typical programming
language is countable.

» There is no surjection from N to N — N.

» Thus there is no surjection from programs to
N — N.

» Thus, however you give semantics to programs,
it is not the case that every function is the
semantics of some program.

01 2 3 4 5 6
fo[+1
f1 +1
f2 +1

3

+1

The halting
problem

Uncomputable functions

» Can we find an explicit example of a function
that cannot be computed?

What does “can be computed” mean?

v

» Let us restrict attention to a
“typical” programming language.
In that case the answer is yes.

v

» A standard example is the halting problem.

The halting problem

Given the source code of a program and its input,
determine whether the program will halt when run
with the given input.

The halting problem is not computable

Proof sketch (with hidden assumptions):

» Assume that the halting problem is
computed by halts.

» Define pax = if haltsx x then loop else skip.
» Consider the application p p",
where "p is the source code of p.

» The result of halts p'"p' must be
true or false.

» Yes.

» No.

The halting problem is not computable

Proof sketch (continued):
» If halts"p'"p' = true, then:

» p'p’ terminates (specification of halts).
» p' p ' = loop, which does not terminate.

» If halts"p'"p' = false, then:

» p p' does not terminate.
» p'p' = skip, which does terminate.

» Either way, we get a contradiction.

Models of
computation

Models of computation

» The proof is based on some assumptions.

» For instance, the programming language allows
us to define if —then—else and loop, with the
intended semantics.

» Later in the course we will be more precise.

» To make it easier to study questions of
computability we will use idealised models of
computation.

One model:
» The primitive recursive functions.

» Functional in character.
» All programs terminate.

Models of computation

Another model:

» A lambda calculus with pattern matching
called x.

» Functional in character.

» Some programs do not terminate.

Yet another model:
» Turing machines.
» Imperative in character.
» Some programs do not terminate.

The

Church-Turing
thesis

Models of computation

» How are these models related?

» Can one say anything about
programming in general?
» It has been noted that many
models of computation are,
in some sense, equivalent:
» Turing machines.
The (untyped) A-calculus.
The recursive functions.

v

v

The Church-Turing thesis

Every effectively calculable function
on the positive integers can be computed
using a Turing machine.

The Church-Turing thesis

Every effectively calculable function
on the positive integers can be computed
using a Turing machine.

» This is one variant of the thesis.
» We will define “can be computed using a
Turing machine” more precisely later.

» There are equivalent statements for
A-expressions, recursive functions, and so on.

Effectively calculable

“Effectively calculable” means roughly that the
function can be computed by a human being

» following exact instructions,
with a finite description,

» in finite (but perhaps very long) time,
» using an unlimited amount of pencil and paper,
» and no ingenuity.

(See Copeland.)

The Church-Turing thesis

» The thesis is a conjecture.

» “Effectively calculable” is an intuitive notion,
not a formal definition.

» However, the thesis is widely believed to be
true.

Turing-complete

A programming language is Turing-complete if every
Turing machine can be simulated using a program
written in this language.

Turing-complete

A programming language is Turing-complete if every
Turing machine can be simulated using a program
written in this language.

» This is one variant of the definition.

» We have not specified what it means to
simulate a Turing machine.

Only
terminating

programs?

Only terminating programs?

» Every primitive recursive function terminates.
» Easy to solve the halting problem!

» Can we have a model of computation that
includes exactly those functions on the natural
numbers that can be implemented using Turing
machines that always halt?

Only terminating programs?

» Every primitive recursive function terminates.
» Easy to solve the halting problem!

» Can we have a model of computation that
includes exactly those functions on the natural
numbers that can be implemented using Turing
machines that always halt?

» No (given some assumptions).

Only terminating programs?

The following assumptions are contradictory:
» The set of valid programs Prog C N.
» For every computable function f: N — N
there is a program " ' : Prog.
» There is a computable function
eval : N — N — N satisfying eval " f 'n = fn.

(See Brown and Palsberg.)

Only terminating programs?

Proof sketch:

» Define the computable function f: N — N by
fn=-evalnn+1.

» We get

fr
=eval T4+ 1
=ff+1

which is impossible.

Summary

Injections, surjections, bijections.
Countable and uncountable sets.
Diagonalisation.

The halting problem.

Models of computation.

The Church-Turing thesis.

Summary

Injections, surjections, bijections.
Countable and uncountable sets.
Diagonalisation.

The halting problem.

Models of computation.

The Church-Turing thesis.

Please try to solve the recommended exercises
before coming to the tutorial on Wednesday.

| 4
>
| 4
| 4
>
| 4

	Introduction
	Comparing sets' sizes
	Countable, uncountable
	The halting problem
	Models of computation
	The Church-Turing thesis
	Only terminating programs?
	Summary

