Invited talk PDRTS, February 15, 2005, Géteborg, Sweden.

Pfair scheduling

Presented by: Bjorn Andersson
Department of Computer Engineering
ba@ce.chalmers.se

proportionate

P fair scheduling

Presented by: Bjorn Andersson
Department of Computer Engineering
ba@ce.chalmers.se

Invited talk PDRTS, February 15, 2005, Géteborg, Sweden.

Why is it interesting?

Real-time scheduling algorithms based on proportionate
fairness offers:

* "fairness for free”

pfairness satisfied = deadlines are met for the
periodic scheduling problem

¢ optimal (uni- and multiprocessor)
* low output jitter
* peaceful coexistence of real-time and non-real-time tasks

Qutline

Preliminaries ® Problem statement,
* Concepts and system model

* The idea of proportionate
progress

Results * Existence of a pfair scheduling
algorithm

* The algorithm PF

Invited talk PDRTS, February 15, 2005, Géteborg, Sweden.

CHALMERS

Problem statement

Schedule on a multiprocessol ai Set ofi periodically amiving
hard real-time tasks with constant EXecution time: N erder

16, meet deadlines

CHALMERS

Concepts and system model

e AtaskT,

* Atasksett={14,T5...,T}

* Period T, and execution time C,. (0<C/T<1)

* Relative deadline D, D=T, (periodic scheduling
problem)

* Hard deadlines

* A task arrives at t=0 for the first time (synchronous task
set)

* L=lem(T,,T,,...,T,)
Example: Icm(2,3,6)=6, because

2*k1 =6
3*k2 =6
6*k3 =6

Invited talk PDRTS, February 15, 2005, Géteborg, Sweden.

CHALMERS

Concepts and system model

m identical processors
A task can be preempted. No preemption cost.
A task can migrate. No migration cost.

Quantum based: T; 0 Z*,C; O Z*, scheduling decisions
can only occur at integers

* A task must execute during a whole time slot or not
execute in that time slot at all.

The idea of proportionate progress

Problem: schedule t = {(T, = 5,C,=2), (T, = 7,C,=4)} on 1 processor

wl P EEE e
e LIl

time

>

One solution: schedule a task t; to execute C/T, every time unit

o JOUO0000000000an0aanp
- [INNRDRRRNRNNNDRNNNNEN

time

C/5 evenytime unit' = (C/i5)A0k every Tk timerunit= C; every i time: Unit

> deadlinesiarermetinpenodic schieduling;

Invited talk PDRTS, February 15, 2005, Géteborg, Sweden.

CHALMERS

The idea of proportionate progress

Problem: schedule t = {(T, = 5,C,=2), (T, = 7,C,=4)} on 1 processor

wl PP
e PP

»

time

One solution: schedule a task t; to execute C/T; every time unit

o JOOO0000000000000aa00]
- [FENRDDNRNRNNNANDNNNEN

time

[Sithere a schedulerthat only switchesitasks at Integelr boundanes?

CHALMERS

The idea of proportionate progress
Definition
lag(t,t) = te«(C/T) - allocated(t;t)
H_/ Y - R
error Should have Actualy did
executed execute
during [O,t) during [O,t)
Consequence
T; executes => lag(t;) decreses by 1-C/T,
T; does not execute => lag(T;) increases by C/T,
Goal
Find an algorithm that minimizes max |lag(T;,t)|
T

Invited talk PDRTS, February 15, 2005, Géteborg, Sweden.

CHALMERS

The idea of proportionate progress
Problem: schedule t = {(T, = 5,C,=2), (T, = 7,C,=4)} on 1 processor
switch tasks only at integer boundaries
0 I | | | | I | | No task executes in [0,1) =>
o [T lag(r, 1)= 1%(2/5)-0 # 0
tir'ne lag(t,,1)= 1*(4/7)-0 £ 0
T, |:| | | | I | | T, executes in [0,1) =>
1, | | | | | | | | lag(t,;,1)= 1%(2/5)-1 # 0
> lag(t,,1)= 1*(4/7)-0 £ 0
time
T I | | | | I | | T, executes in [0,1) =>
T, . EEEER lag(t,,1)= 1*(2/5)-0 # 0
—»> lag(t,,1)= 1*%(4/7)-1 # O
time
120((v;,1)=0NSH imjpessible

CHALMERS

The idea of proportionate progress:

How far from zero can the lag be?

Problem: schedule 1 = {(T, = 4,C,=1), (T, = 4,C,=1), (T; = 4,C;=1),
(T, =4,C,=1)} on 1 processor,

v

lag(ty,1)= 1* (1/4) -1 = -3/4
lag(t,,3)= 3*(1/4) -0 = 3/4

Invited talk PDRTS, February 15, 2005, Géteborg, Sweden.

The idea of proportionate progress:
Pfairness

Definition

A schedule is pfair iff:
forall T, and forall t: -1 <lag(t,t) <1

Consequence

If a schedule is pfair then the schedule
solves periodic scheduling.

The idea of proportionate progress:

Pfairness
Proof

A schedule S is pfair

=-1<lag(t,t) <1

=-1<lag(t,k*T) <1

=-1 < k*T*(C{/T,) — allocated(t,,k*T)) < 1

=-1 < k*C, — allocated(t;,k*T)) < 1

=k*C, — allocated(t;,k*T;) =0

=allocated(t;,k*T;) = k*C;

= allocated(t;,(k+1)*T,) - allocated(t;,k*T;) = C,
=T, executed C; time units during [K*T;,k*T+T}]
= T; meets every deadline in periodic scheduling

Invited talk PDRTS, February 15, 2005, Géteborg, Sweden.

Qutline

Results * Existence of a pfair scheduling
algorithm

* The algorithm PF

Results: existence of a pfair
scheduling algorithm

Want to show

Invited talk PDRTS, February 15, 2005, Géteborg, Sweden.

Results: existence of a pfair
scheduling algorithm

Want to show

Yo . (CIT)=m = a pfair schedule exists

Idea

Y=z n (CIT)=m = apfair schedule = a pfair schedule exists
exists during [0,L)

Results: existence of a pfair
scheduling algorithm

Want to show

Yinz..m (CIT)=m = a pfair schedule
exists during [O,L)

ldea

2izn2..m (C/T)=m = aninteger solution = a pfair schedule

to the network flow exists exists during [O,L)

Invited talk PDRTS, February 15, 2005, Géteborg, Sweden.

CHALMERS

Results: existence of a pfair

scheduling algorithm (7 -2c-1),

T, =0 — (T, =3,C,=1),
Ty =1 @ (T3 =6,C5=1),
Ei = 1 processor
T3 (=4
T, =5
-
Ty = <7 - "
T, =2 mrL
Ty, (=3
T, =4
T, =5
Ty (=0
Ty =1
Ty, (=2
Ty, (=3
Tyy =4
Tyy 15

CHALMERS

Results: existence of a pfair
scheduling algorithm

Want to show

Yicpo,.n (CIT)=m = an integer solution
to the network flow

Yicgo,..n (CIT)=m = afractional solution = an integer solution
to the network flow to the network flow

10

Invited talk PDRTS, February 15, 2005, Géteborg, Sweden.

CHALMERS

Results: The algorithm PF

The algorithm PF assigns priorities to tasks at every
time slot. (dynamic priority)

wed by algorithm: PE IS/ plair

i al. Algorithmica 96

CHALMERS

Results: The algorithm PF
~lag(>0

time

11

Invited talk PDRTS, February 15, 2005, Géteborg, Sweden.

o |
Results: The algorithm PF

* Execute all urgent tasks.
A task T, is urgent at time t if
lag(t;,t)>0 and
lag(T;, t+1)=0 if T; executes.
* Do not execute tnegru tasks.
A task T1; is tnegru at time t if
lag(t;,t) <0 and
lag(t;,t)<0 if 1, does not execute.
* For the other tasks, execute the task that have the
least t>now such that lag(t;,t)>0.

Improvements

A new task model: intra-sporadic task

* Intra-sporadic task = a pseudotask can arrive
whenever the previous pseudotask has completed

* Intra-sporadic tasks can be used to schedule sporadic
and asynchronous task sets

* PD? preserves optimality for these problems
* For details see: Srinivasan and Anderson, STOC’2002

12

Invited talk PDRTS, February 15, 2005, Géteborg, Sweden.

CHALMERS

Conclusion

e notion| of pialiess can e Used to design optimal
- J:

0
ieal-time: scheduling algorithms for multiprocessoers.

13

