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Abstract .  Graph algorithms have long been a challenge to program in a 
pure functional language. Previous attempts have either tended to be un- 
readable, or have failed to achieve standard asymptotic complexity measures. 
We explore a number of graph search algorithms in which we achieve stan- 
dard complexities, while significantly improving upon traditional imperative 
presentations, In particular, we construct the algorithms from reusable com- 
ponents, so providing a greater level of modularity than is typical elsewhere. 
Furthermore, we provide examples of correctness proofs which are quite dif- 
ferent from traditional proofs, largely because they are not based upon rea- 
soning about the dynamic process of graph traversal, but rather reason about 
a static value. 

1 I n t r o d u c t i o n  

Graph algorithms do not have a particularly auspicious history in purely functional 
languages. It  has not been at all clear how to express such algorithms without using 
side effects to achieve efficiency, and lazy languages by their nature have had to 
prohibit side-effects. So, for example, many texts provide implementations of search 
algorithms which are quadratic in the size of the graph (see [Pau91], [Hol91], or 
[Har93]), compared with the standard linear implementations given for imperative 
languages (see [Man89], or [CLRg0]). What is more, very little seems to have been 
gained by expressing such algorithms functionally--the presentation is sometimes 
worse than the traditional imperative presentation! 

In these notes we will explore various aspects of expressing graph algorithms 
functionally with one overriding concern--we refuse to give ground on asymptotic 
complexity. The algorithms we present have identical asymptotic complexity to the 
standard presentation. 

Our emphasis is on depth-first search algorithms. The importance of depth-first 
search for graph algorithms was established twenty years ago by Tarjan and Hopcroft 
[Tar72, HT73] in their seminal work. They demonstrated how depth-first search could 
be used to construct a variety of efficient graph algorithms. In practice, this is done 
by embedding code-fragments necessary for a particular algorithm into a depth-first 
search procedure skeleton in order to compute relevant information while the search 
proceeds. While this is quite elegant it has a number of drawbacks. Firstly, the depth- 
first search code becomes intertwined with the code for the particular algorithm, 
resulting in monolithic programs. The code is not built by re-use, and there is no 
separation between logically distinct phases. Secondly, in order to reason about such 
depth-first search algorithms we have to reason about a dynamic process--what 
happens and when--and such reasoning is complex. 
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Occasionally, the depth-first forest is introduced in order to provide a static value 
to aid reasoning. We build on this idea. If having an explicit depth-first forest is good 
for reasoning then, so long as the overheads are not unacceptable, it is good for pro- 
gramming. In this paper, we present a wide variety of depth-first search algorithms 
as combinations of standard components, passing explicit intermediate values from 
one to the other. The result is quite different from traditional presentations of these 
algorithms, and we obtain a greater degree of modularity than is usually seen. 

Of course, the idea of splitting algorithms into many separate phases connected by 
intermediate data structures is not new. To some extent it occurs in all programming 
paradigms, and is especially common in functional languages. What  is new, however, 
is applying the idea to graph algorithms. The challenge is to find a sufficiently flexible 
intermediate value which allows a wide variety of algorithms to be expressed in terms 
of it. 

In our work there is one place where we do need to use destructive update in 
order to gain the same complexity (within a constant factor) as imperative graph 
algorithms. We make use of recent advances in lazy functional languages which use 
monads to provide updatable state, as implemented within the Glasgow Haskell 
compiler. The compiler provides extensions to the language Haskell providing up- 
datable arrays, and allows these state-based actions to be encapsulated so that  their 
external behaviour is purely functional (a summary of these extensions is given in 
the Appendix). Consequently we obtain linear algorithms and yet retain the ability 
to perform purely functional reasoning on all but one fixed and reusable component. 

Most of the methods in this paper apply equally to strict and lazy languages. The 
exception is in the case when depth-first search is being used for a true search rather 
than for a complete traversal of the graph. In this case, the co-routining behaviour 
of lazy evaluation allows the search to abort early without needing to add additional 
mechanisms like exceptions. 

2 R e p r e s e n t i n g  g r a p h s  

There are at least three rather distinct ways of representing (directed) graphs in a 
language like Haskell. For example: 

1. as an element of an algebraic datatype containing cycles constructed using lazi- 
ness; 

2. as an (immutable) array of edges; or 
3. as explicit mutable nodes in the heap (working within the state monad). 

The first of these is the most "functional" in its flavour, but suffers from two serious 
defects. First, cyclic structures are isomorphic to their unrolled counterparts 1, but 
graphs are not isomorphic to their unrolling. Each node of the graph could be tagged 
explicitly, of course. But this still leaves us with the second defect: cyclic structures 
are hard to preserve and modify. Hughes proposed lazy memo functions as a means 
of preserving cycles [Hug85], but these have not been adopted into any of the major 

1 In languages like Scheme which have object identity this is not the case, but this is at 
the (semantic) cost of tagging each cons-cell with a unique identifier. 
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lazy languages. And without them, something as simple as mapping a function over 
the graph will cause it to unfurl. In addition within any cycle, the graph structure 
is monolithic: any change to  a part  of it will force the whole cycle to be rebuilt. An 
exception to this may occur if the compiler manages to deduce some sort of linearity 
property which allows update-in-place, but then the efficiency of the algorithm may 
become a very delicate matter.  

The second representation method lies somewhere on the border between "func- 
tional" and "imperative". Using arrays to store edge lists is a common practice in 
the imperative world, but the only array facility used is constant-time read-access (if 
the graph is static), so purely functional arrays are appropriate. This is the method 
we will focus on. 

The final method is highly imperative, and is most appropriate when it is vital 
to be able to change the graph in-place (i.e. when a local modification should be 
globally visible). 

2.1 Adjacency Lists 

We represent a graph as a standard Haskell immutable array, indexed by vertices, 
where each component of the array is a list of those vertices reachable along a single 
edge. This gives constant time access (but not update-- these arrays may be shared 
arbitrarily). By using an indexed structure we are able to be explicit about the 
sharing that  occurs in the graph. In addition, this structure is linear in the size of 
the graph, that  is, the sum of the number of vertices and the number of edges. 

We can use the same mechanism to represent undirected graphs as well, simply by 
ensuring that  we have edges in both directions. An undirected graph is a symmetric 
directed graph. We could also represent multi-edged graphs by a simple extension, 
but will not consider them here. 

Graphs, therefore, may be thought of as a table indexed by vertices. 

type Table a = Array Vertex a 

type Graph = Table [Vertex] 

The type Ver tex  may be any type belonging to the Haskell index class Ix,  which 
includes In t ,  Char, tuples of indices, and more. For now we will assume: 

t y p e  Ver tex  = Char 

We will make the simplifying assumption that the vertices of a graph are contiguous 
in the type (e.g. numbers 0 to 59, or characters 'a '  to 'z', etc.). If not then a hash 
function will need to be introduced to map the actual names into a contiguous block. 
Because we assume contiguity, we commonly represent the list of vertices by a pair 
of end-points: 

t ype  Bounds = (Ver t ex ,Ver t ex )  

Haskell arrays come with indexing (!) and the functions i n d i c e s  (returning a list 
of the indices) and bounds (returning a pair of the least and greatest indices). 

To further manipulate tables (including graphs) we define a generic function inapt 
which applies its function argument to every table index/entry pair, and builds a 
new table. 
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mapT :: (Vertex -> a -> b) -> Table a -> Table b 

mapT f t = array (bounds t) [(v, f v (t!v)) [ v<-indices t] 

The Haskelt function a r r a y  takes low and high bounds and a list of index/value 
pairs, and builds the corresponding array in linear time. 

Finally, it is sometimes useful to translate an ordered list of vertices into a lookup 
table which shows the position of the vertex in the list. For this we could use the 
function tabulate: 

tabulate :: Bounds -> [Vertex] -> Table Int 

tabulate bnds vs = array bnds (zip vs [i..]) 

which zips the vertices together with the positive integers 1,2,  3 , . . . ,  and (in linear 
time) builds an array of these numbers, indexed by the vertices. 

2.2 Edges  

Sometimes it is convenient to extract a list of edges from the graph. An edge is a pair 
of vertices. But, because some graphs are sparse, we also need to know separately 
what the vertices are. 

type VE = (Bounds,[(Vertex,Vertex)I) 

edges :: Graph -> VE 

edges g = (bounds g, [(v,w) ] v <- indices g, w <- g!v]) 

To build up a graph from a list of edges we define a function buildG. 

buildG :: VE -> Graph 

buildG (bnds,es) = accumArray snoc [] bnds es 

where snoc xs x = x:xs 

Like a r r ay  the Haskell function accumArray builds an array from a list of in- 
dex/value pairs, with the difference that accumhrray accepts possibly many val- 
ues for each indexed location, which are combined using the function provided as 
accumArray's first argument. Here we simply build lists of all the values associated 
with each index. Again, constructing the array takes linear time with respect to the 
length of the adjacency list. So in linear time, we can convert a graph defined in 
terms of edges to a graph represented by a vertex table. 

2.3 Simple  operations 

Following edges 
To find the immediate successors to a vertex v in a graph g we simply compute g ! v, 
which returns a list of vertices. 
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Transposing a graph 
Combining the functions edges and buildG gives us a way to reverse all the edges 
in a graph giving the transpose of the graph: 

transposeG :: Graph-> Graph 
transposeG g = buildG (vs, [(w,v) i 

where (vs,es) = edges g 
(v,w) <- es]) 

We extract the edges from the original graph, reverse their direction, and rebuild a 
graph with the new edges. 

OutDegree and InDegree 
Using inapT we could define, 

outdegree :: Graph -> Table Int 
outdegree g = mapT nl,m~.dges g 

where numEdges v ws = length ws 

which builds a table containing the number of edges leaving each vertex. 

Now by using transposeG we can immediately define an iridegree table for ver- 
tices: 

indegree :: Graph -> Table Int 
indegree g = outdegree (transposeG g) 

This example gives an early feel for the approach we develop in these notes. Rather 
than defining indegree from scratch by, for example, building an array incrementally 
as we traverse the graph, we simply reuse previously defined functions, combining 
them in a fresh way. The result is shorter and clearer, though potentially more 
expensive (an intermediate array is constructed). 

There are two things to say about this additional cost. Firstly, the additional 
cost only introduces a constant factor into the complexity measure, so the essence 
of the algorithm is preserved. Secondly, recent work in the automatic removal of 
intermediate structures promises to come a long way to removing this problem. We 
will come back to this in Section 7. 

3 D e p t h - F i r s t  S e a r c h  

The traditional view of depth-first search is as a process which may loosely be de- 
scribed as follows. Initially, all the vertices of the graph are deemed "unvisited", 
so we choose one and explore an edge leading to a new vertex. Now we start at 
this vertex and explore an edge leading to another new vertex. We continue in this 
fashion until we reach a vertex which has no edges leading to unvisited vertices. At 
this point we backtrack, and continue from the latest vertex which does lead to new 
unvisited vertices. 

Eventually we will reach a point where every vertex reachable from the initial 
vertex has been visited. If there are any unvisited vertices left, we choose one and 
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begin the search again, until finally every vertex has been visited once, and every 
edge has been examined. 

In this paper we concentrate on depth first search as a specification for a value 
rather than on a process, The specified value is the spanning forest defined by a 
depth-first traversal of a graph, that is, a particular sub-graph of the original which, 
while it contains all the vertices, typically omits many of the edges. 

The edges of the graph that are included in the spanning forest are (quite natu- 
rally) called tree edges. The omitted edges may be classified further with respect to 
the forest. Thus an edge in the graph which goes in the opposite direction to the tree 
edges is called a back edge. Conversely, a forward edge jumps more than one level 
from a vertex to one of its descendents (in the spanning forest). Finally, a cross edge 
is an edge which connects vertices across the forest--but always from right to left, 
there are no left-right cross edges. This standard classification is useful for thinking 
about a number of algorithms, and later we give an algorithm for classifying edges 
in this way. 

3.1 Specif icat ion of  depth-f i rs t  search 

As the approach to depth-first search algorithms which we explore in these notes is 
to manipulate the depth-first forest explicitly, the first step, therefore, is to construct 
the depth-first forest from a graph. To do this we need an appropriate definition of 
trees and forests. 

A forest is a list of trees, and a tree is a node containing some value, together 
with a forest of sub-trees. Both trees and forests are polymorphic in the type of data 
they may contain. 

data Tree a = Node a (Forest a) 
type Forest a = [Tree a] 

A depth-first search of a graph takes a graph and an initial ordering of vertices. All 
graph vertices in the initial ordering will be in the returned forest. 

dfs :: Graph-> [Vertex] -> Forest Vertex 

This function is the pivot of these notes. For now we restrict ourselves to considering 

its properties, and will leave its Haskell implementation until Section 5. 
Sometimes the initial ordering of vertices is not important. When this is the case 

we use the related function 

dff :: Graph -> Forest Vertex 
dff g = dfs g (indices g) 

which arbitrarily uses the underlying order of indices as an initial vertex ordering. 

3.2 Properties 

What are the properties of depth-first forests? They can be completely characterised 
by the following two conditions. 
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(i) The  depth-f i rs t  forest of a graph is a spanning subgraph,  t ha t  is, i t  has the  same 
ver tex  set, but  the edge set is a subset  of t he  graph edge set. 

(ii) The  graph  contains no left-right cross edges with resl?ect to the  forest, 

Later  on in the  paper,  we find i t  convenient to  ta lk  in terms of paths ra ther  than  
single edges: a pa th  being made up of zero or more edges joined end to end. We will 
wri te  v ----+ w to mean tha t  there is an edge from v to w; and v ,~ w to mean tha t  
there  is a pa th  of zero or more edges from v to w. I t  should be clear from the context  
which graph is being discussed. 

The  lack of left-right cross edges t rans la tes  into paths .  At  the  top  level, it  implies 
t ha t  there  is no pa th  from any vertex in one tree to any ver tex in a tree tha t  occurs 
la te r  in the  forest. Thus 2, 

L e m m a  1. I f  ( t s + + u s = d f f  g) ,  then 

Vv �9 t s .  Vw �9 u s .  -~(v - - *  w) 

Deeper  within each tree of the forest, there  can be pa ths  which traverse a tree from 
left to r ight ,  bu t  the absence of any graph edges which cross the  tree s t ructure  from 
left to  r ight  implies tha t  the pa th  has to follow the t ree structure.  Tha t  is: 

L e m m a 2 .  I f  the tree (Node x ( t s + + u s ) )  is a subtree occurring anywhere within 
t i f f  g, then 

V v � 9  . V w � 9  . v 3 , ) w = : ~  v - - * x  

So the  only way to get from v to w is via  (an ancestor  of) x, the  point  at  which 
the  forests t ha t  contain v and w are combined (otherwise there would be a left-right 
cross edge). Thus there is also a pa th  from v to x. 

The  last  p roper ty  we pick out  focusses on d f s ,  and provides a relat ionship be- 
tween the ini t ial  order, and the s t ructure  of the  forest 3. 

L e m m a  3. Let a and b be any two vertices. Write ~ for paths in the graph g, 
and < for the ordering induced by the list of vertices vs.  Then 

3 t E d f s  g v s . a E t A b � 9  

r 3c . c --+r a A c ----~ b A (Vd . d ~ a V d )) b =v c < d) 

This P rope r ty  says that :  

=~ given two vertices which occur within a single depth-f irs t  t ree ( taken from the 
forest),  then there is a predecessor of bo th  (with respect  to )~ ) which occurs 
earl ier  in vs  than  any other predecessor of either. (If this were not  the case, then 
a and b would end up in different trees).  

r if the  earl iest  predecessor of ei ther a or b is a predecessor of them both,  then 
they  will end up in the  same tree (rooted by this predecessor).  

Whi le  these three propert ies  are t rue of depth-f i rs t  search spanning forests, but  
they  are  not  complete. There are other  useful proper t ies  not  derivable from these. 

2 We use the notation ts++us to indicate any division of the list of trees in the forest, such 
that  the order of the trees is preserved. Note that either t s  or us could be empty. Also, 
we use E to indicate list membership and not purely for set membership. 

3 We further overload the E notation, to mean that both a and b occur as vertices within 
the tree t. 
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4 Depth-first search algorithms 

Having specified depth-first search (at least partly) we turn to consider how it may 
be used. 

Algorithm 1. Depth-first numbering 

The first algorithm is straightforward. We wish to assign to each vertex a number 
which indicates where that vertex came in the search. A number of other algorithms 
make use of this depth-first search number, including the biconnected components 
algorithm that appears later, for example. 

We can express depth-first ordering of a graph g most simply by flattening the 
depth-first forest in preorder. Preorder on trees and forests places ancestors before 
descendants and left subtrees before right subtrees4: 

preorder :: Tree a - >  [a] 
preorder (Node a is) = [a] ++ preorderF ts 

preorderF :: Forest a -> [a] 
preorderF ts = concat (map preorder ts) 

Now obtaining a list of vertices in depth-first order is easy: 

pre0rd :: Graph -> [Vertex] 

preOrd g = preorderF (dff g) 

For many situations this is eactly what we want. However, it is sometimes useful to 
translate the ordered list into actual numbers. To obtain such a table of depth-first 
search numbers we can simply use the t a b u l a t e  function from earlier: 

preNums :: Graph -> Table Int 
preNums g = tabulate (bounds g) (pre0rd g) 

Algorithm 2. Topological  sorting 

The dual to preorder is postorder, and unsurprisingly this turns out to be useful in 
its own right. Postorder places descendants before ancestors and left subtrees before 
right subtrees: 

postorder :: Tree a -> [a] 
postorder (Node a is) ffi postorderF ts ++ [a] 

postorderF :: Forest a-> [a] 
postorderF ts = concat (map postorder is) 

So, like with preorder, we define, 

4 The use of repeated appends (++) caused by concat introduces an extra logarithmic 
factor here, but this is easily removed using standard transformations. 



316 

postOrd :: Graph-> [Vertex] 
postOrd g = postorderF (dff g) 

Again, using t a b u l a t e  we could construct (in linear time) a table containing the 
post-order numbers of each of the vertices. 

postNums :: Graph -> Table Int 
postNums g = tabulate (bounds g) (postOrd g) 

The absence of left-right cross edges in depth-first search forests leads to a pleasant 
proper ty  when any depth-first search forest is flattened in postorder.  If there is a 
path  from some vertex v to a vertex w later in the ordering, then there is also an 
even later vertex u (beyond w) which, like w is also reachable by a path from v. In 
addition, however, there is also a path in the other direction, going from u to v. We 
can make this precise as follows. 

D e f i n i t i o n  4. A linear ordering < on vertices is a post-ordering with respect to  a 
graph g exactly when, 

v < w A v - - ~ w : ~ 3 u . v ' . ' .  ; ; u h w < _ u  

where v "..' '; u means v 7) u and u ~'," v. 

This property is so-named because post order flattening of depth first forests 
have this property. 

T h e o r e m  5. The order in which the vertices appear in p o s t 0 r d  g is a post-ordering 
with respect to g. 

Proof. If  v comes before w in a post order flattening of a forest, then either w is an 
ancestor of v, or w is to the right of v in the forest. In the first case, take w as u. 
For the second, note that  as v ---~ w, by Proper ty  1, v and w cannot  be in different 
trees of the forest. Then by Proper ty  2, the lowest common ancestor of v and w will  
do. 

We can apply all this to topological sorting. A topological sort is an arrangement  
of the vertices of a directed acyclic graph into a linear sequence v l , . . . ,  v,  such tha t  
there are no edges (and hence no paths) from later (greater numbered) to earlier 
(lesser numbered) vertices. 

This problem arises quite frequently, where the graph represents a set of tasks 
need to be scheduled, with the edges representing inter-task dependencies (an edge 
v ~ w is interpreted as "task v must be done before task w"). The topological sort 
produces a linear ordering of the tasks in which none of the tasks depend on earlier 
tasks. 

We define, 

topSort :: Graph-> [Vertex] 
topSort g = reverse (postOrd g) 

T h e o r e m  6. I f  g is an aeyclic graph, then t o p S o r t  g produces a topological sorting 

ofg. 
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P r o o f .  We write > for the order of vertices from t o p S o r t  g. Then < is the reverse 
ordering, that  is, the ordering given by p o s t 0 r d  g. Now, suppose that  v > w A 
v )~ w. Then, 

as g is acyclic. 

w ~_ v A v ---~ w =~ v ~_ w A v ----)+ w 

::~ B u .  v ~ "~ u A w  ~ _ u  

::~ v---. w 

A l g o r i t h m  3. Connected components 

Two vertices in an undirected graph are c o n n e c t e d  if there is a path  from the one to 
the other. In a directed graph, two vertices are connected if they would be connected 
in the graph made by viewing each edge as undirected. Finally, with an undirected 
graph, each tree in the depth-first spanning forest will contain exactly those vertices 
which constitute a single component. 

We can translate this directly into a program. The function components takes a 
graph and produces a forest, where each tree represents a c o n n e c t e d  component. 

components :: Graph -> Forest Vertex 
components g = dff (undirected g) 

where a graph is made undirected by: 

undirected :: Graph-> Graph 
undirected g = buildG (vs, concat [[(v,w),(w,v)] I (v,w)<-es]) 

where (vs,es) = edges g 

The undirected graph we actually search may have duplicate edges, but this has no 
effect on the structure of the components. ~ r the rmore ,  as the number of edges is 
at most doubled, neither is there any effect on the asymptotic complexity. 

A l g o r i t h m  4. S t ro ng l y  connected components 

Two vertices in a directed graph are said to be s t r o n g l y  c o n n e c t e d  if each is reachable 
from the other. A strongly connected component is a maximal subgraph, where all 
the vertices are strongly connected with each other. The problem of determining 
strongly-connected components is well known to compiler writers as the dependency 
analysis problem--separat ing procedures/functions into mutually recursive groups. 
We implement the double depth-first search algorithm of Kosaraju (unpublished), 
and [Sha81]. 

scc : : Graph -> Forest Vertex 
scc g = dfs (transposes g) (reverse (postOrd g)) 

The vertices of a graph are ordered using pos tOrd (which, recall, includes a call to 
dfs) .  The reverse of this ordering is used as the initial vertex order for a depth- 
first traversal on the transpose of the graph. The result is a forest, where each tree 
constitutes a single strongly connected component. 

The algorithm is simply stated, but its correctness is not at all obvious. However, 
it may be proved as follows. 
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T h e o r e m  7. Let a and b be any two vertices of g. Then 

( 3 t E s t a  g . a E t A b E t) C# a ~ ~" b 

Proof. The proof proceeds by calculation. We write gT for the transpose of g. Paths  
v - - ~  w i n g  will be paths v e - - w  in gT. Further, let _< be the post-ordering defined 
by p o s t 0 r d  g. Then its reversal induces the ordering >_. Now, 

3t E see  g . a E t A b E t  

r {Definition of scc} 

3t E dfs gW (reverse (post0rd g)) . a, b E t 

r {By Property 3} 

3 c . c e - - a A c ( (  bA(Vd.d<< a V d e - - b = ~ c > d )  

r  ) ) c A b  ) ) c A ( V d . a  ) ) d V b - - - - ~ d = ~ d < c )  

From here on we construct a loop of implications. 

3 c .  a ---~ c A b ---~ c A (Vd. a ----~ d V b ---~ d ~ d < c) 

=~ {Consider d -- a and d = b } 

3 c . a - - - ~ c A a < _  c A b  ) ) c A b < c A ( Y d . a - - ~ d V b - - ~ d = : ~ d < _ c )  

::~ {_< is a post-ordering} 

3 c .  ( 3 e . a ~ ' ~ e ^ c < e ) ^  
(3 f  .b;~ " ' f A c < _ f ) A ( V d . a  ) ) d V b . - - - ~ d ~ d < c )  

=v {e = c and f = c using (Vd...)} 

3 c .  a ,'," ;; c A b ~,~,: ~" c 

=ez {Transitivity} 

a ,'," "" b 

which gives us one direction. But  to complete the loop: 

a ~," ~" b 

=~ {There is a latest vertex reachable from a or b} 

a ~ "~ b A 3 c .  (a - - ~ c V b  ))c) A (Vd. a ----~dVb----~d ~ d<_ c) 

=~ {Transitivity of ~ } 

3 c . a  ) ) c A b  ) ~ c A ( V d . a  )~dVb )>d=~d<_c)  

as required, and so the theorem is proved. 

To the best  of our knowledge, this is the first calculational proof of this algorithm. 
Traditional proofs (see [CLRg0], for example) typically take many pages of  wordy 
argument.  In contrast,  because we are reusing an earlier algorithm, we are able to 
reuse its properties also, and so obtain a compact  proof. Similarly, we believe tha t  it 
is because we are using the depth-first search forest as the basis of our program tha t  
our proofs are simplified as they are proofs about  values rather than about  processes. 

A minor variation on this algorithm is to reverse the roles of the original and 
transposed graphs: 
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scc' :: Graph -> Forest Vertex 

scc' g = dfs g (reverse (post0rd (transpeseG g))) 

The advantage now is that not only does the result express the strongly connected 
components, but it is also a valid depth-first forest for the original graph (rather 

than for the transposed graph). This alternative works as the strongly connected 
components in a graph are the same as the strongly connected components in the 
transpose of the graph. 

A l g o r i t h m  5. Classifying edges 

We have already discussed the classification of graph edges with respect to a given 
depth-first search. Here we codify the idea by building subgraphs of the original 
containing all the same vertices, but only a particular kind of edge. 

Tree edges are easiest, these are just the edges that appear explicitly in the 
spanning forest. The other edges may be distinguished by comparing preorder and/or  
postorder numbers of the vertices of an edge. 

Only back edges go from lower postorder numbers to higher, whereas only cross 
edges go from higher to lower in both orderings. Forward edges, which are the com- 
position of tree edges, cannot be distinguished from tree edges by this means--both 
tree edges and forward edges go from lower preorder numbers to higher (and con- 
versely in postorder)--but as we can already determine which are tree edges there is 
no problem in extracting the remaining forward edges. The implementation of these 
principles is now immediate 5. 

tree :: Bounds -> Forest Vertex -> Graph 
tree bnds ts = buildG (bnds, concat (map flat ts)) 

where flat (Node v ts) = [(v,w) I Node w us <- ts] 
++ concat (map flat ts) 

back :: Graph -> Table Int -> Graph 
back g post = mapT select g 

where select v ws = [ w I w <- ws, post!v<post!w ] 

cross :: Graph -> Table Int -> Table Int -> Graph 
cross g pre post = mapT select g 

where 
select v ws = [ w I w <- ws, post!v>post!w, pre!v>pre!w] 

forward :: Graph -> Graph -> Table Int -> Graph 
forward g tree pre = mapT select g 

where select v ws = [ w I w <- ws, pre!v<pre!w] \\ tree!v 

To classify an edge we generate the depth-first spanning forest, and use this to 
produce tables of preorder and postorder numbers. We then have all the information 
required to construct the appropriate subgraphs corresponding to the various sorts 
of edges. 

5 The use of (quadratic) list difference in forward is a minor infelicity--the second list is 
an ordered subsequence of the flrst so can be removed by a linear traversaI of the first. 
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Algor i thm 6. F i n d i n g  r e a c h a b l e  ve r t i ces  

Finding all the vertices that  are reachable from a single vertex v demonstrates that 
the d f s  doesn't  have to take all the vertices as its second argument. Commencing 
a search at v will construct a tree containing all of v's reachable vertices. We then 
flatten this with preorder to produce the desired list. 

reachable :: Graph -> Vertex -> [Vertex] 

reachable g v = preorderF (dfs g Iv]) 

We could have used either flattening (pre- or post-order) but using preordering does 
not require any buffering of vertices--the vertices are placed in the list as soon as 
dfs places them in the spanning forest. 

One application of this algorithm is to test for the existence of a path between 
t w o  vertices: 

path :: Graph -> Vertex -> Vertex -> Bool 

path g v w = . telem ~ (reachable g v) 

The elem test is lazy: it returns True as soon as a match is found. Thus the result of 
reachable is demanded lazily, and so only produced lazily. As soon as the required 
vertex is found the generation of the depth-first search forest ceases. Thus dfs  im- 
plements a true search and not merely a complete traversaL To achieve this in a 
strict language like ML, for example, would require modifications to dfe  to enable 
it to raise an exception at an appropriate time. 

5 Implementing depth-first search 

In order to translate a graph into a depth-first spanning tree we make use of a 
technique common in lazy functional programming: generate then prune. Given a 
graph and a list of vertices (a root set), we first generate a (potentially infinite) 
forest consisting of all the vertices and edges in the graph, and then prune this 
forest in order to remove repeats. The choice of pruning pattern determines whether 
the forest ends up being depth-first (traverse in a left-most, top-most fashion) or 
breaflth-first (top-most, left-most), or perhaps some combination of the two. 

5.1 G e n e r a t i n g  

We define a function g e n e r a t e  which, given a graph g and a vertex v builds a tree 
rooted at  v containing all the vertices in g reachable from v. 

generate :: Graph -> Vertex -> Tree Vertex 

generate g v = Node v (map (generate g) (g!v)) 

Unless g happens to be a tree anyway, the generated tree will contain repeated 
subtrees. Further, if g is cyclic, the generated tree will be infinite (though rational). 
Of course, as the tree is generated on demand, only a finite portion will be generated. 
The parts that  prune discards will never be constructed. 
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5.2 Pruning 

The goal of pruning the (infinite) forest is to discard subtrees whose roots have 
occurred previously. Thus we need to maintain a finite set of vertices (traditionally 
called "marks") of those vertices to be discarded. The set-operations we require are 
initialisation (the empty set), a membership test, and addition of an extra element. 
While we are prepared to spend linear time in generating the empty set (as it is only 
done once), it is essential that  the other operations can be performed in constant 
time (otherwise we lose linearity of dfs) .  

The easiest way to achieve this is to make use of state transformers, and mimic 
the imperative technique of maintaining an array of booleans, indexed by the set 
elements. This is what we do. We provide an explanation of state-transformers in the 
Appendix, but as they have already been described in a number of papers [Mog89, 
Wad90, LPJ94], and already been implemented in more than one Haskell variant, 
we avoid cluttering the main text. 

The implementation of vertex sets is easy: 

type Set s = MutArr s Vertex Bool 

mkEmpty :: Bounds -> ST s (Set s) 

mkEmpty bnds = newArr bnds False 

contains :: Set s -> Vertex -> ST s Bool 

contains m v = readArr m v 

include :: Set s -> Vertex -> ST s () 

include m v = writeArr m v True 

A set is represented as a mutable array, indexed by vertices, containing booleans. 
To generate an empty finite set we allocate an appropriately sized array with every 
element initialised to False .  Set membership, and augmenting the set with a new 
member are just done using array reading and writing. 

Using these, we define prune as follows. 

prune :: Bounds -> Forest Vertex -> Forest Vertex 

prune bnds ts = runST (mkEmpty bnds CthenST' \m -> 

chop m is) 

The prune function begins by introducing a fresh state thread, then generates an 

empty set within that thread and calls the "procedure" chop. The final result of 
prune is the value generated by chop, the final state being discarded. 

chop :: Set s -> Forest Vertex -> ST s (Forest Vertex) 

chop m [] = returnST [] 

chop m (Node v ts : us) 

= contains m v 'thenST ~ \visited -> 

if visited then 

chop m us 

else 
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include m v 'thenST' \_ -> 
chop m ts 'thenST' \as -> 
chop m Us CthenST, \bs -> 
returnST ((Node v as) : bs) 

When-chopping a list of trees, the root of the first is examined. If it has occurred 
before, the whole tree is discarded. If not, the vertex is added to the set represented 
by m, and two further calls to chop are made in sequence. 

The first, namely, chop m t s ,  prunes the forest of descendants of v, adding all 
these in turn to the set of marked vertices. Once this is complete, the pruned sub- 
forest is named as, and the remainder of the original forest is chopped. The result 
of this is named bs, and a forest is constructed from the two. 

All this is clone lazily, on demand. The state combinators force the computation 
to follow a predetermined linear sequence, but exactly where in that sequence the 
computation is, is determined by external demand. Thus if only the top-most left- 
most vertex were demanded, then that is all that would be produced. On the other 
hand, if only the final tree of the forest is demanded, then because the set of marks is 
single-threaded, all the previous trees will be produced. However, this is demanded 
by the very nature of depth-first search anyway, so it is not as restrictive as it may 
at first seem. 

At this point one may wonder whether any benefit has been gained by using a 
functional language. After all, the code looks fairly imperative. To some extent such 
a comment would be justified, but it is important to note that this is the only place 
in the development that destructive operations have to be used to gain efficiency. In 
addition, the complete encapsulation provided by runST guarantees that dfs  has a 
purely functional exterior--the state cannot escape, not even to repeat calls of dfs.  
As far as the rest of the program is concerned, dfs  is purely functional. Thus we 
have the flexibility to gain the best of both worlds: where destructive update is vital 
we use it, where it is not vital We can encapsulate it and use the full power of the 
lazy functional languages. 

5.3 Depth-f irst  Search 

The components of generate and prune are combined to provide the definition of 
depth-first search. 

dfs g vs = prune (bounds g) (map (generate g) vs) 

The argument vs is a list of vertices, so the generate function is mapped across 
this (having been given the graph g). The resulting forest is pruned in a left-most 
top-most fashion by prune. 

5.4 Is State  Essential? 

If paying an extra logarithmic factor is acceptable, then it is possible to dispense 
completely with the imperative features used in prune, and to use an implementation 
of sets based upon balanced trees, for example. Then set membership and adding 
elements to sets become logarithmic operations, hence the extra factor. 
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Even in this case, however, the set of marks has to be passed around in a s t a t e -  
like manner ,  when pruning a tree it is vital to know which vertices occurred in the 
earlier trees. Thus the code for dfs may remain entirely unchanged, and simply the 
definitions of the plumbing combinators and the set operations would be changed to 
reflect the alternative implementation. 

Interestingly there is an alternative to using state without losing asymptotic com- 
plexity, and that  is to use lazy arrays (as were implemented in LML for example, 
and discussed in the context of state transformers in Launchbury and Peyton Jones 
[LPJ]). In this case the dfs  code would have to be altered, as the set membership 
test is combined in a single operation with adding a new element. That  is, the test 
means "add a new element, and tell me if it was already in the set or not". Details 
of this technique have been exlpored by Johnsson [Joh]. 

6 C o m p l e x i t y  A n a l y s i s  

Models for complexity analysis of imperative languages have been established for 
many years, and verified with respect to reality across many implementations. Using 
these models it is possible to show that traditional implementations of the various 
depth-first search algorithms are linear in the size of the graph (that is, run in 
O( V + E) time). 

Corresponding models for lazy functional languages have not been developed to 
the same level, and where they have been developed there has not yet been the 
same extensive verification. Using such models (based on counting function calls) 
we believe our implementation of the depth-first search algorithms to be linear, but 
because these models have not been fully tested, we also ran empirical tests. 

We took measurements on the strongly connected components algorithm, which 
uses two depth-first searches. Timings were taken on randomly generated graphs 
with up to 5000 vertices and edges, and we plotted the results. They are quite clear: 
the plotted points all lie on a plane, indicating the linearity of the algorithm. 

As for constant factors, we currently estimate that we lose a factor of about 
6 compared with coding in C by (a) using Haskell, and (b) using multi-pass algo- 
rithms. However, such figures are notoriously slippery, especially as the quality of 
the underlying implementation continues to improve. 

7 F u s i n g  t h e  P h a s e s  

There has been a lot of recent work on program fusion (also known as deforestation) 
in the past few years. Most of this work finds its roots in Burstall and Darlington's 
fold/unfold transformations [DB76]. As the various depth-first search algorithms 
presented earlier are built component-wise in a multi-pass fashion, it makes sense to 
ask whether we can fuse the various phases. If we can, how similar are the results 
to traditional depth-first search algorithms? 

7.1 Fus ing  the  c o m p o n e n t s  of  depth-f irst  search 

Even dfs  itself was defined in two separate phases: generate an infinite (potentially) 
forest, and then prune it in a depth-first manner. The relevant Code is as follows. 
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dfs g vs = prune (bounds g) (map (generate g) vs) 

prune bnds ts = runST (mkEmpty bnds 'thenST' \m -> 
chop m is) 

chop  m [] = r e t u r n S T  [] 
chop  m (Node v t s  : u s )  

= contains m v 'thenST' \visited-> 
if visited then 

chop  m us 
else 

include m v 'thenST' \_ -> 
chop m ts 'thenST' \as -> 
chop m us 'thenST' \bs -> 
returnST ((Node v as) : bs) 

generate g v = Node v (map (generate g) (g!v)) 

To fuse thisinto a sin~e phase we first unfold the definition of prune. 

dfs g vs = runST (mkEmpty (bounds g) ~thenST c \m -> 
chop m (map (generate g) vs)) 

Secondl~ weinventa new function snip which satisfies 

snip m g vs = chop m (map (generate g) vs) 

Now using fold/unfold steps we can transformthisas~Ibws (starting with a case 
anMysis on the listargument): 

snip m g [] = chop m (map (generate g) []) 
= chop m [] 
= returnST [] 

and 

snip m g (v:vs) 
= chop m (map (generate g) (v:vs)) 

= chop m (Node v (map (generate g) (g!v)) 
: map (generate g) vs) 

= contains m v 'thenST' \visited -> 
if visited then 

chop m (map (generate g) vs) 
else 

include m v 
chop m (map (generate g) (g!v)) 
chop m (map (generate g) vs) 
returnST ((Node v as) : bs) 

'thenST' \_ -> 
'thenST' \as -> 
'thenST' \bs -> 
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= contains m v 'thenST' \visited -> 

if visited then 

snip m g vs 

else 

include m v 'thenST' \_ -> 

snip m g (g!v) 'thenST' \as -> 

snip m g vs 'thenST' \bs -> 

returnST ((Node v as) : bs) 

Collecting al l the pieces together we have the new definitions: 

d f s  g vs = runST (mkEmpty (bounds g) ' thenST'  \m -> 
snip m g vs) 

snip m g [] = returnST [] 

snip m g (v :vs)  
= con ta in s  m v ' thenST'  \ v i s i t e d  -> 

if visited then 

snip m g vs 

else 

include m v 'thenST' \_ -> 

snip m g (g!v) 'thenST c \as -> 

snip m g vs 'thenST' \bs -> 

returnST ((Node v as) : bs) 

This is much more like the traditional coding. Which of the versions is better? It 
depends what is wanted. Factorising the definition into components promises to 
make proofs about depth-first search itself easier, but having the two components 
fused is likely to be (marginally) more efficient, and does not rely of laziness. This 
latter point is important if these techniques are to be used in a strict language. 

7.2 M o v i n g  Opera t ions  Across  S ta t e  B o u n d a r i e s  

In the previous section, we successfully moved a purely functional operation (map 
(genera te  g vs))  into the scope of a state thread simply by unfolding definitions. 
It was so easy because it was an input to the state operation that was being affected. 

When we want to manipulate the output of a state thread we have to call on a 
little theory. To take a program of the form f (runST m) and move the f inside the 
state-thread, we use the following rule (from parametricity): 

f (runST m) = runST (s t  f m) 

where s t  is the function-part of the ST functor. That is 

s t  f m = \ s  -> l e t  ( a , s ' ) - - - m  s i n  ( f  a , s ' )  

Perhaps more convenient, however is to give an axiomatization with respect to 
thenST and returnST, which goes as follows. 

st f (m 'thenST' (\v -> n)) = m 'thenST' (\v -> st f n) 

st f (returnST a) = returnST (f a) 
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7.3 Topological  sor t  

We take topological sort as an example. It was defined as a depth-first search followed 
by a flattening of the tree and a reversal of the list. Taking the definition and 
expanding out the definition of postDrd and d f f  gives: 

t opSor t  g = r eve r s e  (postorderF (dfs  g ( i nd i ce s  g ) ) )  

dfs  g vs ffi runST (mkEmpty (bounds g) ' thenST'  \m -> 
snip m g vs) 

snip  m g [] = returnST [] 
snip m g (v :vs)  

= contains m v CthenST' \visited -> 

if visited then 

snip m g vs 

else 

include m v 'thenST' \_ -> 

snip m g (gIv) 'thenST' \as -> 

snip m g vs 'thenST' \bs -> 

returnST ((Node v as) : bs) 

We will write revPost  for the composition of r eve r se  and postOrderF. Pushing 
revPos t  into the state thread gives 

topSort g = runST (mkEmpty (bounds g) 'thenST ~ \m -> 

st revPost (snip m g (indices g))) 

Again, we invent a new function definition. Let 

revPostSnip m g vs = st revPost (snip m g vs) 

Then, performing a case analysis on the list argument: 

revPostSnip m g [] 

= st revPost (snip m g []) 

= st revPost (returnST []) 

= returnST (revPost []) 

= returnST [] 

and 

revPostSnip m g (v:vs) 

= st revPost (snip m g (v:vs)) 

= st revPost 

(contains m v 'thenST ~ \visited -> 

if visited then 

snip m g vs 

else 

include m v 'thenST' \_ -> 
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snip m g (g!v) 'thenST ' \as--> 

snip m g vs CthenSTC \bs -> 

returnST ((Node v as) : bs)) 

Push the revPost ~lthe way to the leaves ofthe state thread: 

= contains m v CthenSTC \visited -> 

if visited then 

st revPost (snip m g vs) 

else 
include m v CthenST c \_ -> 

snip m g (g!v) 'thenST' \as -> 

snip m g vs (thenST' \bs -> 

returnST (revPost ((Node v as) : bs)) 

Use the definition ofpostorderF, and the fact thatreverse (xs++ys) = reverse 

ys ++ reverse xs (so long asxs is finite): 

= contains m v (thenST c \visited -> 

if visited then 

revPostSnip m g vs 

else 
include m v CthenST c \_ -> 

snip m g (g!v) 'thenST c \as -> 

snip m g vs ~thenST c \bs -> 

returnST (revPost bs ++ [v] ++ revPos~ as) 

Now we introduce auxilliary names (ps and qs) for the result of applying revPost 
to as and bs, and express these renamingsusing returnST: 

= c o n t a i n s  m v CthenST' \ v i s i t e d  -> 
i f  v i s i t e d  t h e n  

r e v P o s t S n i p  m g vs  
e l s e  

i n c l u d e  m v 
( s n i p  m g (g !v )  ' t h e n S T  ~ \ a s  -> 
r e t u r n S T  ( r e v P o s t  a s ) )  

( s n i p  m g vs ' t h e n S T '  \ b s  -> 
r e t u r n S T  ( r e v P o s t  b s ) )  

r e t u r n S T  (qs ++ [v] ++ ps)  

Final l~  p u l l t h e  r e v P o s t  operat ion ac ross the  c~ls  to sn ip )  

= contains m v 'thenST' \visited -> 

if visited then 

revPostSnip m g vs 

else 

include m v 

st revPost 
(snip m g (g!v) CthenST c \as -> 

CthenST( \_ -> 

(thenST' \ps -> 

CthenST' \qs -> 

'thenST' \_ -> 
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returnST as)) 

st revPost 

(snip m g vs CthenSTC \bs -> 

returnST bs)) 

returnST (qs ++ Iv] ++ ps) 

CthenST' \ps -> 

'thenST' \qs -> 

= contains m v CthenSTC \visited -> 

if visited then 

revPostSnip m g vs 

else 

include m v 

st revPost 

(snip m g (g!v)) 

st revPost 

(snip m g vs) 

returnST (qs ++ Iv] ++ ps) 

'thenST r \_ -> 

CthenST ( \ps -> 

CthenST' \qs -> 

= contains m v CthenST' \visited -> 

i f  visited then 

revPostSnip m g vs 

else 

include m v 

revPostSnip m g (g!v) 

revPostSnip m g vs 

returnST (qs ++ Iv] ++ ps) 

CthenSTC \_ -> 

'thenST' \ps -> 

'thenST' \qs -> 

Putting all this together gives the following definition for topological sort: 

topSort g = runsT (mkEmpty (bounds g) 'thenST ~ \m -> 

revPostSnip m g (indices g)) 

revPostSnip m g [] = returnST [] 

revPostSnip m g (v:vs) 

= contains m v (thenST' \visited -> 

if visited then 

revPostSnip m g vs 

else 

include m v 'thenST' \_ -> 

revPostSnip m g (g!v) CthenSTC \ps -> 

revPostSnip m g vs CthenST' \qs -> 

returnST (qs ++ [v] ++ ps) 

We have successfully eliminated the intermediate spanning forest, but the result 
is still rather unlike a traditional implementation. The lists of vertices built up i n  
the reeursive calls are decidedly non-standard. A typical imperative solution would 
introduce a stack and push the vertices on to the stack as it went along. For example, 
it may be something like the following (assuming suitable definitions for mkStack, 
stackToList and push): 
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topSort g 
= runST (mkEmpty (bounds g) 'thenST' \m -> 

mkStack [] 'thenST c ks -> 
revPostSnip m s g (indices g) 'thenST c \_ -> 
stackToList s) 

r e v P o s t S n i p  m s g [] = r e t u r n S T  ()  
r e v P o s t S n i p  m s g ( v : v s )  

= c o n t a i n s  m v ' t h e n S T '  \ v i s i t e d  -> 
i f  v i s i t e d  then  

r e v P o s t S n i p  m s g vs  
e l s e  

i n c l u d e  m v ' t h e n S T  c \_  -> 
r e v P o s t S n i p  m s g ( g ! v )  ' t h e n S T '  k_ -> 
push s v ' t h e n S T '  \ _  -> 
r e v P o s t S n i p  m s g vs  ' t h e n S T '  \_  -> 
r e t u r n S T  ()  

Again,  which of  these is "better" ? The posi t ioning of  the  push  is r a the r  subtle,  and 
the  choice of s tack ra ther  than  queue even more so. If we had  wanted the vertices 
in the  other  order  (i.e. not  reversed) then we would have had  to make a different 
choice. 

Can the second version be obtained from the first by  techniques similar  to those 
used earl ier? If so, can the earlier techniques be au toma ted?  The  answers to  these 
quest ions are  stil l  far from clear. 

8 A c k n o w l e d g e m e n t s  

This  paper  bears  heavily on work by King and Launchbury  [KL95] and much has 
been lifted verba t im.  The addi t ional  mater ia l  has benef i t ted  from discussions with 
Alex Bunkenburg,  and Tim Sheaxd. 

A p p e n d i x  

Impera t ive  features were init ial ly introduced into the  Glasgow Haskell  compiler  to  
per form input  and  output .  The approach is based on monads,  and can easily be 
ex tended  to achieve in-situ array updates  and to  allow the  impera t ive  act ions to  
be delayed unti l  thei r  results are required. This is the  model  we use. The  no ta t ion  
comes from [LPJ94] 

We use the  monad  of s ta te- t ransformers  with type  const ructor  ST which is de- 
fined: 

t y p e  ST s a = a -> ( a , s )  

So elements of t ype  ST s I n t ,  say, are functions which, when appl ied  to  the  s ta te ,  
r e tu rn  a pair  of an integer together  with a new state .  As usual  we have the  unit  
r e t u r n S T  and the  sequencing combinator  thenST: 



330 

returnST :: a -> ST s a 

returnST a s = (a,s) 

thenST :: ST s a -> (a -> ST s b) -> ST s b 

(m 'thenST' k) s = k a t where (a,t) = m s 

The ST monad comes equipped with three basic array operations: 

newArr ::Ix i=> (i,i) -> a ->ST n (MutArr s i a) 

readArr ::Ix i=> MutArr s i a -> i -> ST s a 

writeArr::Ix i=> MutArr s i a -> i -> a ->ST s () 

The first, newArr, takes a pair of index bounds (the type a must lie in the index 
class Ix) together with an initial value, and returns a reference to an initialised array. 
The time this operation takes is linear with respect to the number of elements in 
the array. The other two provide for reading and writing to an element of the array, 
and both take constant time. 

Finally, the ST monad comes equipped with a function runST. 

runST : :  (\/s . ST s a) -> a 

This takes a state-transformer function, applies it to an initial state, extracts the 
final value and discards the final state. The type of runST is not Hindley-Milner 
because of the nested quantifier, so it must be built-in to Haskell. The universal 
quantifier ensures that in a state thread variables from other state threads are not 
referenced. For details of this see [LPJ94]. 

So, for example, 

runST (newArr (1,8) 0 'thenST' (\hums-> 

writeArr nums 5 42 'thenST' (\_ -> 

readArr hums 5 'thenST' (\v -> 

returnST v) ) ) ) 

will return 42. This can be read as follows: run a new state thread extracting the 

final value when finished; create a new array indexed from I to 8 with components 

all 0; then bind this array to nums; write to array nums at index 5 the value 42; then 
read the component in nums at index 5 and bind this value to v; finally return value 
v. Note that the final expression returnST v is unnecessary as readhr r  returns a 
value. The parentheses immediately after ' thenST'  are also unnecessary, as Haskell's 
grammar binds lambda expressions tighter than infix functions. 
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