Real-world sorting (not on exam)

Sorting algorithms so far

Worst case Average case Best case

Insertion	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n})$
sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$
Quicksort	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Sorting algorithms so far

Introsort

Quicksort: fast in practice, but $O\left(n^{2}\right)$ worst case

Introsort:

- Start with Quicksort
- If the recursion depth gets too big, switch to heapsort, which is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
Plus standard Quicksort optimisations:
- Choose pivot via median-of-three
- Switch to insertion sort for small arrays

Used by e.g. C++ STL, .NET, ...

Dual-pivot quicksort

Instead of one pivot, pick two
Instead of partitioning the array into two pieces, partition it into three pieces

- If pivots are x and y, then:
- elements < x
- elements > x and $<y$
- elements > y

Same complexity as Quicksort, but fewer recursive calls because the array gets split up quicker
Used by Java for primitive types (int, ...)

Traditional merge sort (a recap)

$\begin{array}{llllllllll}1 & 3 & 6 & 8 & 4 & 2 & 1 & 3 & 7 & 5\end{array}$

 split split$\begin{array}{lllll}1 & 3 & 6 & 4\end{array}$
2
375
split split
split split
$\begin{array}{llllllllll}1 & 3 & 6 & 8 & 4 & 2 & 1 & 3 & 7 & 5\end{array}$

13
21
$\begin{array}{llllllllll}1 & 3 & 6 & 8 & 4 & 2 & 1 & 3 & 7 & 5\end{array}$

Natural merge sort

Traditional merge sort splits the input list into single elements before merging everything back together again
Better idea: split the input into runs

- A run is a sequence of increasing elements
- ...or a sequence of decreasing elements
- First reverse all the decreasing runs, so they become increasing
- Then merge all the runs together

split	1	3	36	8	4			1	3 split	7	5	split	
13	36	6	8			2	1			3	7		5
merge		reverse									merge		
						2	4						
				mer	rge				merge				
1	1	2	23	4	6	8				3	5		
merge								merge					
	1	1	12	3	3	4		5	6	7	8		

Natural merge sort

Big advantage: $\mathrm{O}(\mathrm{n})$ time for sorted data

- ...and reverse-sorted data
- ...and "almost"-sorted data

Complexity: $\mathrm{O}(\mathrm{n} \log r)$, where r is the number of runs in the input

- ...worst case, each run has two elements, so $r=$ $\mathrm{n} / 2$, so $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
Used by GHC

$\mathbf{O (n)}$ time per level

Timsort

Natural mergesort is really good on sorted/nearly-sorted data

- You get long runs so not many merges to do

But not so good on random data

- Short runs so many merges

Idea of Timsort: on short random parts of the list, switch to insertion sort How to detect randomness?

- Several short runs next to one another

	1	3	6	8	4	2		1	3	7			
split				spl	lit				split				
1	Don't split 375 into two runs, it's too short!											7	5
					1	2							
merge					rge			se	tio	n			
1	1	2	3	4	6	8				3		5	7
		merg								mer			
	1	1	2	3	3	4		5	6	7			

Timsort

Specifically:

- If we come across a short run, join it together with all following short runs until we reach a threshold
- Then use insertion sort on that part

Also some optimisations for merge:

- Merge smaller runs together first
- If the merge begins with several elements from the same array, use binary search to find out how many and then copy them all in one go
Used in Java for arrays of objects, Python
http://en.wikipedia.org/wiki/Timsort

The best sorting algorithm?

A good sorting algorithm should:

- have $O(n \log n)$ complexity
- have O(n) complexity on nearly-sorted data
- be simple
- be in-place
- be stable
- cache-friendly

No algorithm seems to have all of these!

Summary

No one-size fits all answer

- Best overall complexity: natural mergesort
- But quicksort has smaller constant factors

Different algorithms are good in different situations

- ...you should find out which in the lab :)

Best sorting functions combine ideas from several algorithms

- Introsort: quicksort+heapsort+insertion sort
- Timsort: natural mergesort+insertion sort

Special-purpose sorting algorithms (not on exam)

Sorting integers

All the algorithms we've seen work by comparing elements of the list with \leq

- Advantage: general purpose

If the list contains integers, we can do something different!

- Counting sort:
http://en.wikipedia.org/wiki/Counting_sort
- Bucket sort:
http://en.wikipedia.org/wiki/Bucket_sort
- Radix sort (dates from 1887!):
http://en.wikipedia.org/wiki/Radix_sort

