

Searching

Suppose I give you an array, and ask you to find if a particular value is in it, say 4.

The only way is to look at each element in turn.

This is called *linear search*.

You might have to look at every element before you find the right one.

Searching

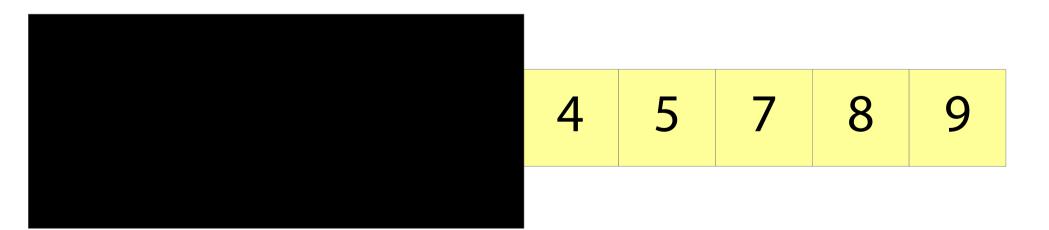
But what if the array is sorted?

Then we can use *binary search*.

Suppose we want to look for 4. We start by looking at the element half way along the array, which happens to be 3.

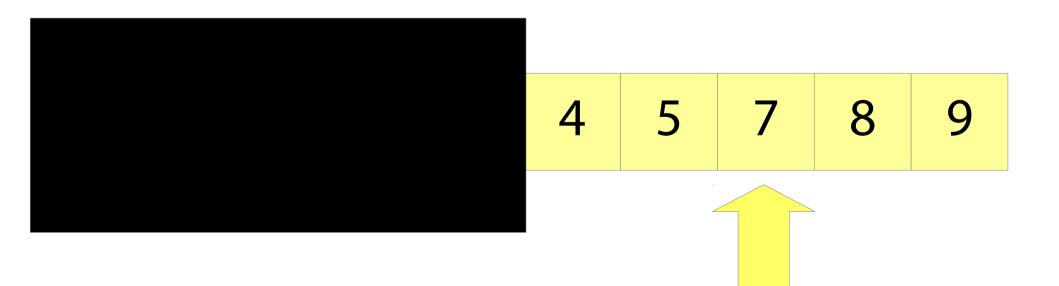
1	2	2	3	3	4	5	7	8	9	

- 3 is less than 4.
- Since the array is sorted, we know that 4 must come after 3.
- We can ignore everything before 3.

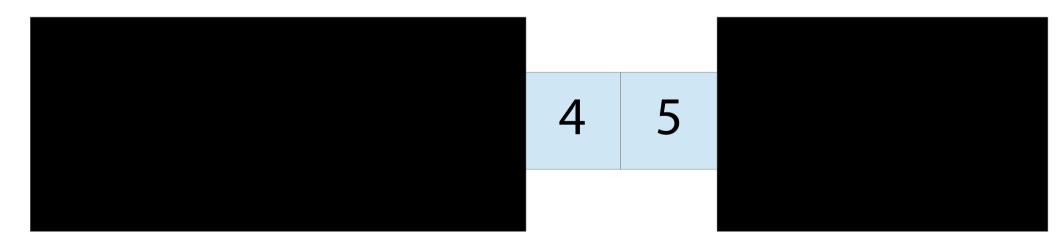


Now we repeat the process.

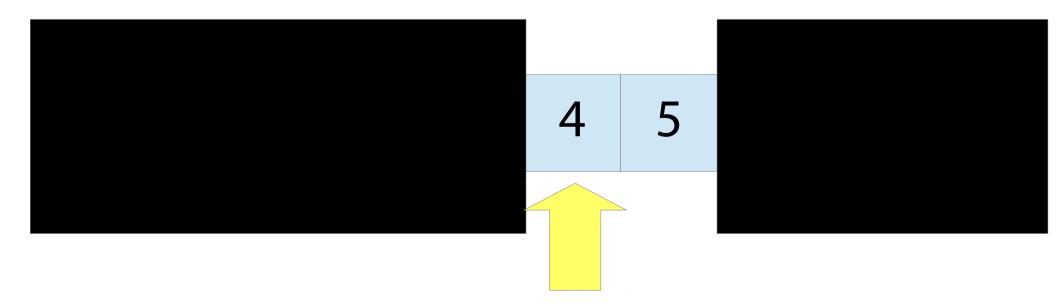
We look at the element half way along what's left of the array. This happens to be 7.



- 7 is greater than 4.
- Since the array is sorted, we know that 4 must come before 7.
- We can ignore everything after 7.



We repeat the process. We look half way along the array again. We find 4!



Performance of binary search

Binary search repeatedly *chops the array in half*

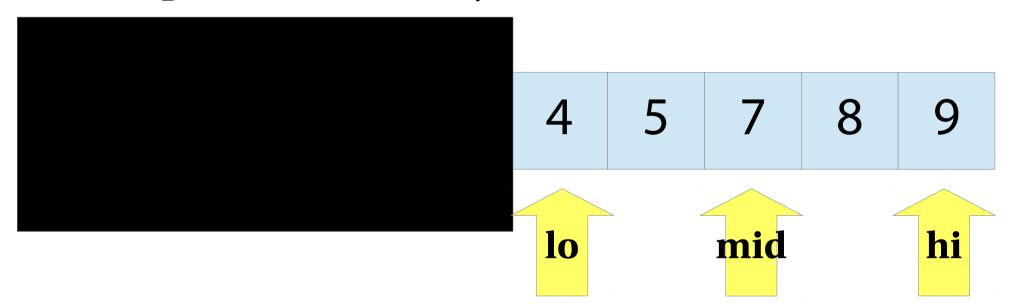
- If we double the size of the array, we need to look at one more array element
- With an array of size 2ⁿ, after n tries, we are down to 1 element
- On an array of size n takes **O(log n)** time!

On an array of a billion elements, need to search **30** elements

(compared to a billion tries for linear search!)

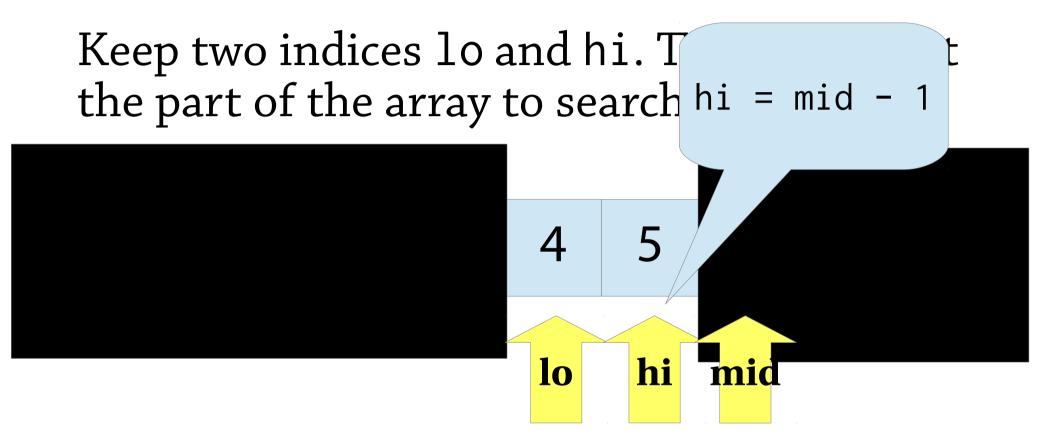
Implementing binary search

Keep two indices 10 and hi. They represent the part of the array to search.

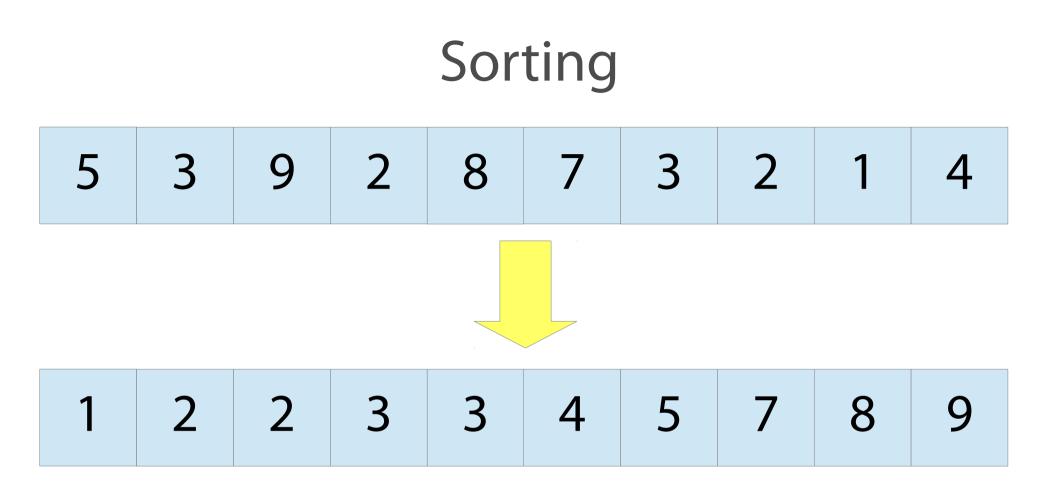


Let mid = (lo + hi) / 2 and look at a[mid] – then either set lo = mid+1, or hi = mid-1, depending on the value of a[mid]

Implementing binary search



Let mid = (lo + hi) / 2 and look at a[mid] – then either set lo = mid+1, or hi = mid-1, depending on the value of a[mid]



Zillions of sorting algorithms (bubblesort, insertion sort, selection sort, quicksort, heapsort, mergesort, shell sort, counting sort, radix sort, ...)

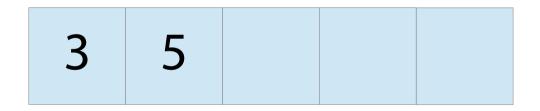
Imagine someone is dealing you cards. Whenever you get a new card you put it into the right place in your hand:

This is the idea of *insertion sort*.

Sorting **5 3 9 2 8** :

Start by "picking up" the 5:

Then insert the 3 into the right place:



Sorting **5 3 9 2 8** :

Then the 9:

Sorting **5 3 9 2 8** :

Then the 2:

2	3	5	9	

Sorting **5 3 9 2 8** :

Finally the 8:

Complexity of insertion sort

Insertion sort does n insertions for an array of size n

Does this mean it is O(n)? *No!* An insertion is not constant time.

To insert into a sorted array, you must move all the elements up one, which is O(n).

Thus total is $O(n^2)$.

This version of insertion sort needs to make a new array to hold the result

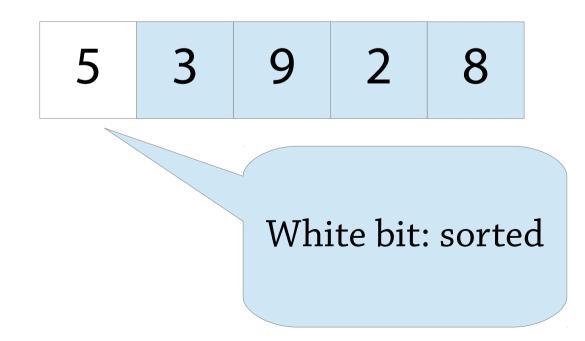
An *in-place* sorting algorithm is one that doesn't need to make temporary arrays

• Has the potential to be more efficient

Let's make an in-place insertion sort!

Basic idea: loop through the array, and insert each element into the part which is already sorted

The first element of the array is sorted:



Insert the 3 into the correct place:

Insert the 9 into the correct place:

3	5	9	2	8
---	---	---	---	---

Insert the 2 into the correct place:

|--|

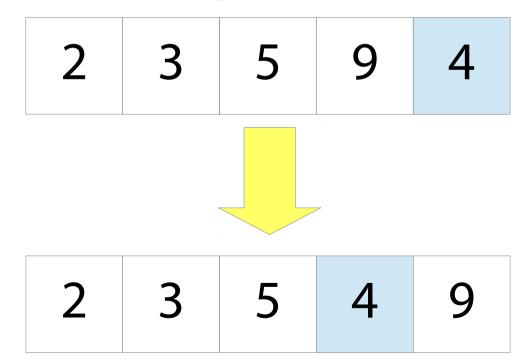
2	3	5	9	8
---	---	---	---	---

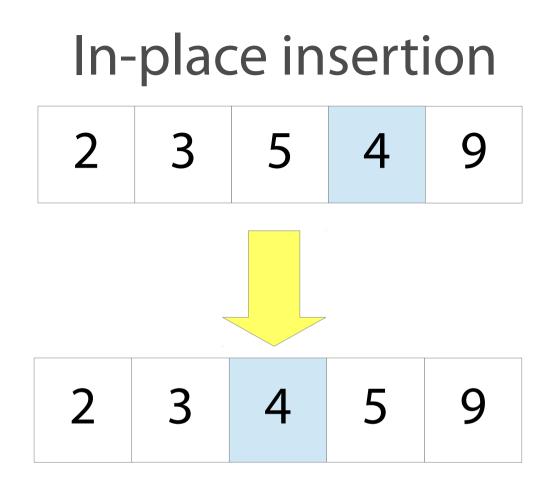
Insert the 8 into the correct place:

2	3	5	8	9

In-place insertion

One way to do it: repeatedly swap the element with its neighbour on the left, until it's in the right position

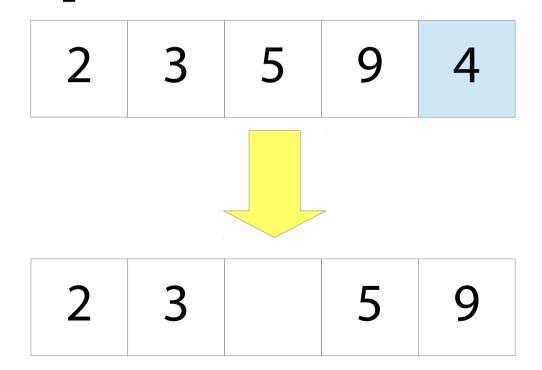


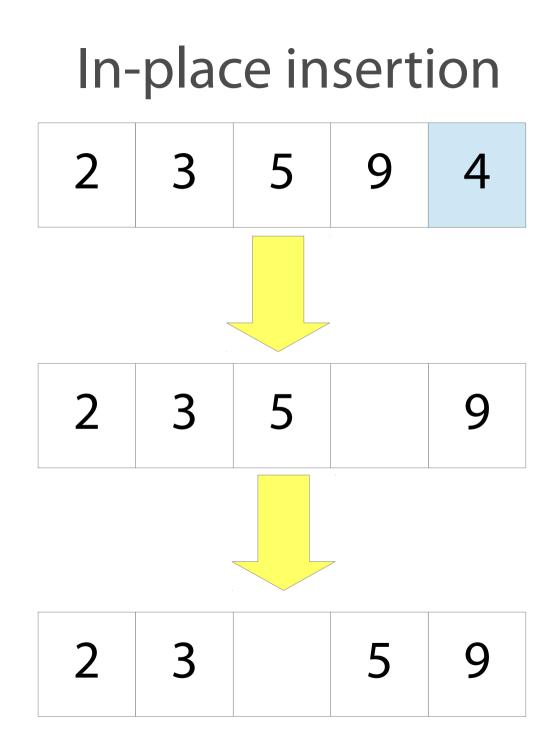


while n > 0 and array[n] > array[n-1]
 swap array[n] and array[n-1]
 n = n-1

In-place insertion

An improvement: instead of swapping, move elements upwards to make a "hole" where we put the new value





This notation means 0, 1, ..., i-1

for i = 1 to n

insert array[i] into array[0..i)
An aside: we have the *invariant* that
array[0..i) is sorted

- An invariant is something that holds whenever the loop body starts to run
- Initially, i = 1 and array[0..1) is sorted
- As the loop runs, more and more of the array becomes sorted
- When the loop finishes, i = n, so array[0..n) is sorted – the whole array!

O(n²) in the worst case O(n) in the best case (a sorted array) Actually the fastest sorting algorithm in general for small lists – it has low constant factors

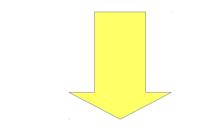
Divide and conquer

Very general name for a type of recursive algorithm

You have a problem to solve.

- *Split* that problem into smaller subproblems
- *Recursively* solve those subproblems
- *Combine* the solutions for the subproblems to solve the whole problem

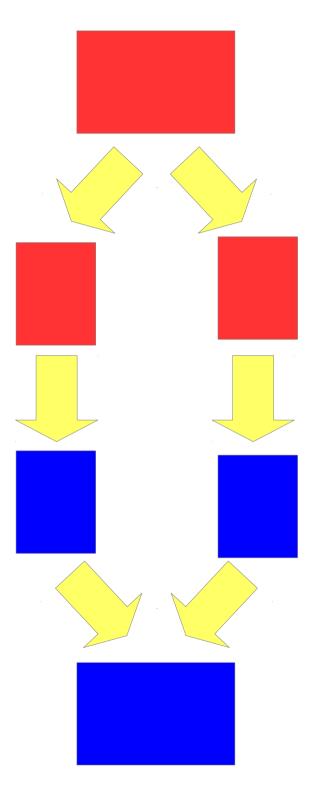
To solve this...



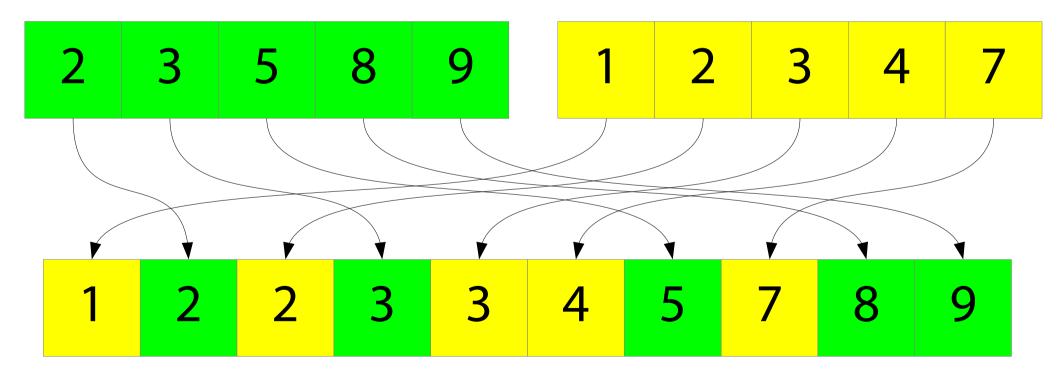
1. *Split* the problem into subproblems

2. *Recursively* solve the subproblems

3. *Combine* the solutions



We can *merge* two sorted lists into one in linear time:



A divide-and-conquer algorithm To mergesort a list:

- *Split* the list into two equal parts
- *Recursively* mergesort the two parts
- *Merge* the two sorted lists together

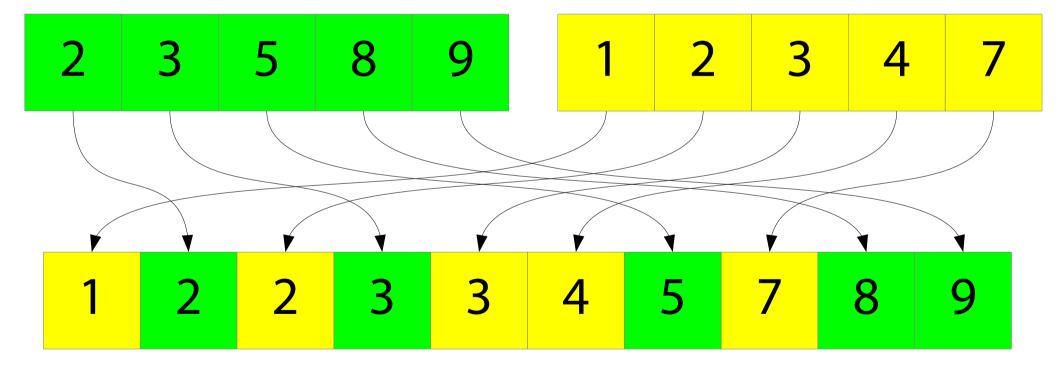
1. *Split* the list into two equal parts

5	3	9	2	8	7	3	2	1	4
			-						
5	3	9	2	8	7	3	2	1	4

2. *Recursively* mergesort the two parts

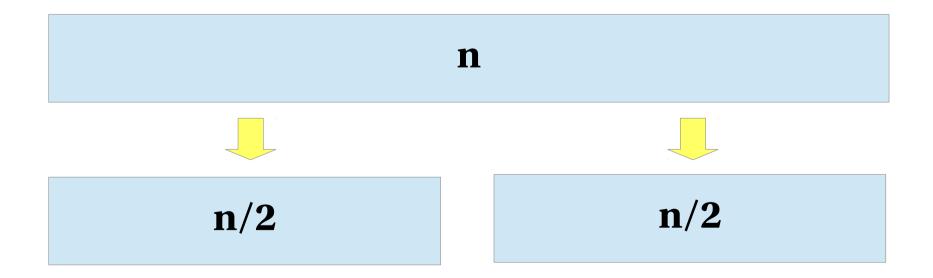
5	3	9	2	8		7	3	2	1	4
2	3	5	8	9		1	2	3	4	7

3. *Merge* the two sorted lists together



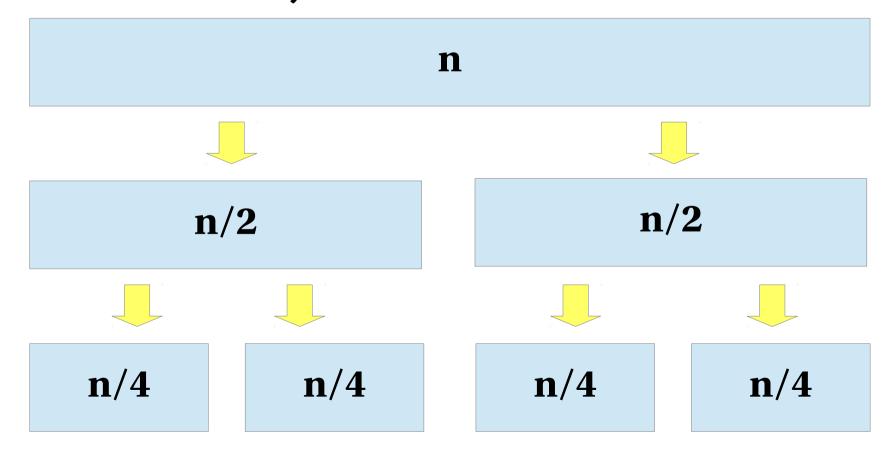
Complexity of mergesort

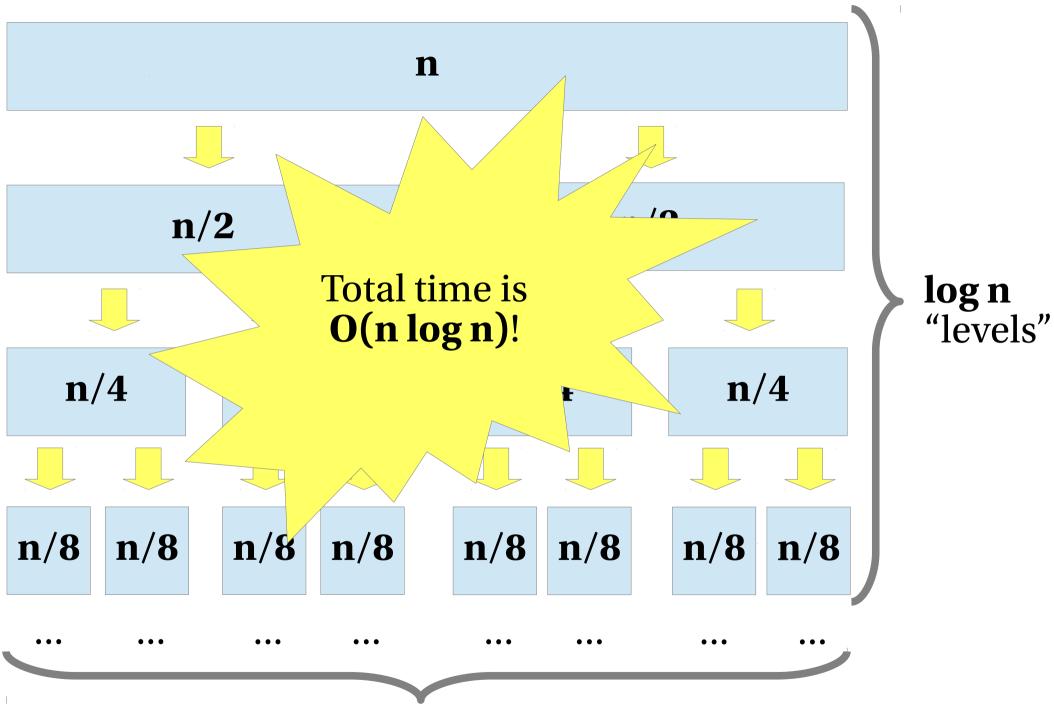
An array of size n gets split into two arrays of size n/2:



Complexity of mergesort

The recursive calls will split these arrays into four arrays of size n/4:





O(n) time per level

Complexity analysis

Mergesort's complexity is O(n log n)

- Recursion goes log n "levels" deep
- At each level there is a total of O(n) work

General "divide and conquer" theorem:

- If an algorithm does O(n) work to split the input into two pieces of size n/2 (or k pieces of size n/k)...
- ...then recursively processes those pieces...
- ...then does O(n) work to recombine the results...
- ...then the complexity is O(n log n)

Sorting so far

There are a *huge* number of sorting algorithms

 No single best one, each has advantages (hopefully) and disadvantages

Insertion sort:

- $O(n^2)$ so not good overall
- Good on small arrays though low *constant factors* Merge sort:
 - O(n log n), hooray!
 - But not in-place and high constant factors