Complexity

Complexity

This lecture is all about how to describe the performance of an algorithm
Last time we had three versions of the file-reading program. For a file of size n :

- The first one needed to copy $\mathrm{n}^{2} / 2$ characters
- The second one needed to copy $n^{2} / 200$ characters
- The third needed to copy 2 n characters

We worked out these formulas, but it was a bit of work - now we'll see an easier way

Big O notation

Instead of saying...

- The first implementation copies $\mathrm{n}^{2} / 2$ characters
- The second copies $n^{2} / 200$ characters
- The third copies $2 n$ characters

We will just say...

- The first implementation copies $\mathbf{O}\left(\mathbf{n}^{2}\right)$ characters
- The second copies $\mathbf{O}\left(\mathbf{n}^{2}\right)$ characters
- The third copies $\mathbf{O}(\mathbf{n})$ characters

O(n ${ }^{2}$) means "proportional to $n^{2 "}$
(almost)

Time complexity

With big-O notation, it doesn't matter whether we count steps or time!
As long as each step takes a constant amount of time:

- if the number of steps is proportional to n^{2}
- then the amount of time is proportional to n^{2} We say that the algorithm has $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time complexity or simply complexity
Big-O

Name

$\mathrm{O}(1)$
Constant
$\mathrm{O}(\log n)$
Logarithmic
$\mathrm{O}(n)$
Linear
$\mathrm{O}(n \log n) \quad$ Log-linear
$\mathrm{O}\left(n^{2}\right)$
Quadratic
$\mathrm{O}\left(n^{3}\right)$
Cubic
$\mathrm{O}\left(2^{n}\right)$
Exponential

Growth rates

Imagine that we double the input size from n to 2 n .
If an algorithm is...

- $\mathrm{O}(1)$, then it takes the same time as before
- O(log n), then it takes a constant amount more
- $O(n)$, then it takes twice as long
- $O(\mathrm{n} \log \mathrm{n})$, then it takes twice as long plus a little bit more
- $O\left(n^{2}\right)$, then it takes four times as long

If an algorithm is $\mathrm{O}\left(2^{\mathrm{n}}\right)$, then adding one element makes it take twice as long
Big O tells you how the performance of an algorithm is affected by the input size

A sneak peek

Outer loop runs
$\mathrm{O}(\mathrm{n})$ times
boolean unique(Object[] a) \{
for (int i = 0; i < a.length; i++)
for (int j = 0; j < i; i++)
if (a[i].equals(a[j]) Innerloop runs return false;
return true;
\}

$$
\mathrm{O}(\mathrm{n}) \times \mathrm{O}(\mathrm{n})=\mathbf{O}\left(\mathbf{n}^{2}\right)
$$

The mathematics of big O

Big O, formally

Big O measures the growth of a mathematical function

- Typically a function $\mathrm{T}(n)$ giving the number of steps taken by an algorithm on input of size n
- But can also be used to measure space complexity (memory usage) or anything else
So for the file-copying program:
- $T(n)=n^{2} / 2$
- $T(n)$ is $O\left(n^{2}\right)$

Big 0, formally

What does it mean to say " $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ "?
We could say it means $T(n)$ is proportional to n^{2}

- i.e. $T(n)=k n^{2}$ for some k
- e.g. $T(n)=n^{2} / 2$ is $O\left(n^{2}\right)($ let $k=1 / 2)$

But this is too restrictive!

- We want $T(n)=n(n-1) / 2$ to be $O\left(n^{2}\right)$
- We want $T(n)=n^{2}+1$ to be $O\left(n^{2}\right)$

Big O, formally

Instead, we say that $T(n)$ is $O\left(n^{2}\right)$ if:

- $T(n) \leq k n^{2}$ for some k, i.e. $\mathrm{T}(\mathrm{n})$ is proportional to n^{2} or lower!
- This only has to hold for big enough n: i.e. for all n above some threshold n_{0}

If you draw the graphs of $T(n)$ and kn^{2}, at some point the graph of kn^{2} must permanently overtake the graph of $\mathrm{T}(\mathrm{n})$

- In other words, $\mathrm{T}(\mathrm{n})$ grows more slowly than kn^{2} Note that big-O notation is allowed to overestimate the complexity!

An example: $n^{2}+2 n+3$ is $O\left(n^{2}\right)$

Exercises

- Is $3 n+5$ in $\mathrm{O}(\mathrm{n})$?
- Is $\mathrm{n}^{2}+2 \mathrm{n}+3$ in $\mathrm{O}\left(\mathrm{n}^{2}\right)$?
- Is it in $\mathrm{O}\left(\mathrm{n}^{3}\right)$?
- Is it in $\mathrm{O}(\mathrm{n})$?
- Why do we need the threshold?

Adding big O (a hierarchy)

$\mathrm{O}(1)<\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}(\mathrm{n} \log \mathrm{n})<$
$\mathrm{O}\left(\mathrm{n}^{2}\right)<\mathrm{O}\left(\mathrm{n}^{3}\right)<\mathrm{O}\left(2^{\mathrm{n}}\right)$
When adding a term lower in the hierarchy to one higher in the hierarchy, the lower-complexity term disappears:

$$
\begin{aligned}
& O(1)+O(\log n)=O(\log n) \\
& O(\log n)+O\left(n^{k}\right)=O\left(n^{k}\right)(i f k \geq 0) \\
& O\left(n^{i}\right)+O\left(n^{k}\right)=O\left(n^{k}\right) \text { if } j \leq k \\
& O\left(n^{k}\right)+O\left(2^{n}\right)=O\left(2^{n}\right)
\end{aligned}
$$

An example: $n^{2}+2 n+3$ is $O\left(n^{2}\right)$

Quiz

What are these in Big O notation?

- $\mathrm{n}^{2}+11$
- $2 n^{3}+3 n+1$
- $\mathrm{n}^{4}+2^{\mathrm{n}}$

Just use hierarchy!

$$
\begin{aligned}
& n^{2}+11=O\left(n^{2}\right)+O(1)=O\left(n^{2}\right) \\
& 2 n^{3}+3 n+1=O\left(n^{3}\right)+O(n)+O(1)=O\left(n^{3}\right) \\
& n^{4}+2^{n}=O\left(n^{4}\right)+O\left(2^{n}\right)=O\left(2^{n}\right)
\end{aligned}
$$

Multiplying big O

O (this) $\times \mathrm{O}$ (that) $=\mathrm{O}$ (this \times that $)$

- e.g., $O\left(n^{2}\right) \times O(\log n)=O\left(n^{2} \log n\right)$

You can drop constant factors:

- $\mathrm{k} \times \mathrm{O}(\mathrm{f}(\mathrm{n}))=\mathrm{O}(\mathrm{f}(\mathrm{n}))$, if k is constant
- e.g. $2 \times O(n)=O(n)$
(Exercise: show that these are true)

Quiz

What is $\left(n^{2}+3\right)\left(2^{n} \times n\right)+\log _{10} n$ in Big O notation?

Answer

$\left(n^{2}+3\right)\left(2^{n} \times n\right)+\log _{10} n$
$=O\left(n^{2}\right) \times O\left(2^{n} \times n\right)+O(\log n)$
$=O\left(2^{n} \times n^{3}\right)+O(\log n)\left(m u^{1}+i p l i c a t i o n\right)$
$=O\left(2^{n} \times n^{3}\right)$ (hierarchy $)$

$$
\begin{gathered}
\log _{10} \mathrm{n}=\log \mathrm{n} / \log 10 \\
\text { i.e. } \log \mathrm{n} \text { times a } \\
\text { constant factor }
\end{gathered}
$$

Reasoning about programs

Complexity of a program

Most "primitive" operations take constant time:
int add(int x, int y) \{ return x + y;
\}

O(1)

Complexity of a program

What about loops?
(Assume the array size is n)
boolean member(Object[] array, Object x) \{
for (int i = 0; i < array.length; i++)
if (array[i].equals(x))
return true;
return false;
\}

Complexity of a program

What about loops?
(Assume the array size is n)
boolean member(Object[] array, Object x) \{
for (int i = 0; i < array.length; i++)
if (array[i].equals(x))
return true;
return false;
\}

Loop runs
$\mathrm{O}(\mathrm{n})$ times

$O(1) \times O(n)=\mathbf{O}(\mathbf{n})$
Loop body takes
O(1) time

Complexity of loops

The complexity of a loop is: the number of times it runs times the complexity of the body

What about this one?

boolean unique(Object[] a) \{
for(int i = 0; i < a.length; i++)

$$
\text { for (int } \mathrm{j}=0 \text {; } \mathrm{j} \text { < a.length; j++) }
$$

if (a[i].equals(a[j]) \&\& i != j) return false;
return true;
\}

What about this on ${ }^{\text {? }}$

Outer loop runs
boolean unique (Object[] a) \{ n times:

$$
\mathrm{O}(\mathrm{n}) \times \mathrm{O}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)
$$

for (int $i=0 ; i<a . l$ E. $^{\text {. }}$
for (int $j=0 ; j<a . l e r_{\text {g }}=\ldots, \quad \jmath$,

Inner loop runs e;
ret $\begin{gathered}\mathrm{n} \text { times: } \\ \mathrm{O}(\mathrm{n}) \times \mathrm{O}(1)=O(\mathrm{n})\end{gathered}$
Loop body:
\}
$\mathrm{O}(1)$

What about this one?

void function(int n) \{
for (int i = 0; i < n*n; i++)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{n} / 2$; $\mathrm{j}++$) "something taking $0(1)$ time"
\}

What about this ona?

Outer loop runs
void function(int n) \{
for (int i = 0; i < n*n, n^{2} times:
$\mathbf{O}\left(\mathbf{n}^{2}\right) \times O(n)=O\left(n^{3}\right)$
for (int $j=0 ; j<n / 2 ; \quad, \cdot$, ". + hinc taking $O(1)$ time"
\} Inner loop runs $\mathrm{n} / 2=\mathbf{O}(\mathbf{n})$ times:
$\mathrm{O}(\mathrm{n}) \times \mathrm{O}(1)=\mathrm{O}(\mathrm{n})$
Loop body: O(1)

Here's a new one

boolean unique(Object[] a) \{
for(int i = 0; i < a.length; i++)

$$
\text { for (int } j=0 ; j<i ; j++ \text {) }
$$

if (a[i].equals(a[j])) return false;
return true;
\}

Here's a new one

boolean unique(Object[] a) \{
for(int i = 0; i < a.length; i++)

$$
\begin{aligned}
& \text { for (int j = 0; j < i; j++) } \\
& \text { i+ } \quad \text { 「i7 onuals(a[j])) }
\end{aligned}
$$

Inner loop is E,
ret $\quad i \times O(1)=O(i)$??
\}
But it should be in terms of n ?

Body is $\mathrm{O}(1)$

Here's a new one

boolean unique(Object[] a) \{
for(int i = 0; i < a.length; i++)

$$
\text { for (int } \mathbf{j}=0 ; j<\mathbf{i} ; j++ \text {) }
$$

it , ,「i7 هnיuals(a[j]))
$\mathrm{i}<\mathrm{n}, \mathrm{so} \mathrm{i}$ is $\mathbf{O}(\mathbf{n}) \quad$ e,
So loop runs $\mathbf{O}(\mathbf{n})$
ret times, complexity:
Body is $\mathrm{O}(1)$
$\mathrm{O}(\mathrm{n}) \times \mathrm{O}(1)=\mathrm{O}(\mathrm{n})$

Here's a new one

boolean unique (Object[] a) $\left\{\begin{array}{c}n \text { times: } \\ O(n) \times O(n)=O\left(n^{2}\right)\end{array}\right.$
for $\left(i n t i=0 ; i<a . l t_{1}\right.$.
for (int $j=0 ; j<i ; j+$, it \neg 「iר onuals $(a[j]))$
$\mathrm{i}<\mathrm{n}$, so i is $\mathbf{O (n)} \triangleq$,
ret So loop runs $\mathbf{O (n)}$
\}
(n)

Body is $\mathrm{O}(1)$

The example from earlier

void something(Object[] a) \{
for (int i = 0; i < a.length; i++)
for (int j = 0; j < i ; j++)
for (int k = 0; k < j; k++)
"something that takes 1 step"
\}

$$
\mathrm{i}<\mathrm{n}, \mathrm{j}<\mathrm{n}, \mathrm{k}<\mathrm{n},
$$

so all three loops run $\mathbf{O}(\mathbf{n})$ times
Total runtime is
$\mathrm{O}(\mathrm{n}) \times \mathrm{O}(\mathrm{n}) \times \mathrm{O}(\mathrm{n}) \times \mathrm{O}(1)=\mathbf{O}\left(\mathbf{n}^{3}\right)$

What's the complexity?

void something(Object[] a) \{
for (int i = 0; i < a.length; i++)
for (int $\mathrm{j}=1$; $\mathrm{j}<\mathrm{a}$.length; j *= 2)
... // something taking $0(1)$ time
\}

Outer loop is What's the complexity?
$O(n \log n)$
Inner loop is $\mathrm{O}(\log \mathrm{n})$
for (int $\mathrm{i}=0$; $\mathrm{i}<a . l e n g t h ; ~ i n$
for (int $j=1 ; j<a . l e n g t n ; j *=2)$
... // something taking $0(1)$ time \}

A loop running through $i=1,2,4, \ldots, n$ runs $\mathbf{O}(\log \mathbf{n})$ times!

While loops

long squareRoot(long n) \{

$$
\begin{aligned}
& \text { long } i=0 ; \\
& \text { long } j=n+1 \text {; } \\
& \text { while }(i+1 \quad!=j)\left\{\begin{array}{r}
\text { bu } \\
\text { d } \\
\quad \text { long } k=(i+j) / 2 ; \\
\quad \text { if }(k * k<=n) i=k ; \\
\quad \text { else } j=k ;
\end{array}\right.
\end{aligned}
$$

\}
return i;
\}

While loops

long squareRoot(long n) \{

Each iteration takes $\mathrm{O}(1)$ time

$$
\begin{aligned}
& \text { long } i=0 ; \\
& \text { long } j=n+1 ; \\
& \text { while }(i+1 \quad!=j)\{ \\
& \quad \text { long } k=(i+j) / 2 ; \\
& \quad \text { if }(k * k<=n) i=k ; \\
& \text { else } j=k ;
\end{aligned}
$$

\}
return i;
...and halves
$j-i$, so $\mathbf{O}(\log \mathbf{n})$
iterations

Summary: loops

Basic rule for complexity of loops:

- Number of iterations times complexity of body
- for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$) ...: n iterations
- for (int $\mathrm{i}=1 ; \mathrm{i} \leq \mathrm{n} ; \mathrm{i}^{*}=2$): $\mathrm{O}(\log \mathrm{n})$ iterations
- While loops: same rule, but can be trickier to count number of iterations
If the complexity of the body depends on the value of the loop counter:
- e.g. $\mathrm{O}(\mathrm{i})$, where $0 \leq \mathrm{i}<\mathrm{n}$
- round i up to $\mathrm{O}(\mathrm{n})$!

Sequences of statements

What's the complexity here?
(Assume that the loop bodies are O(1))
for (int $i=0 ; i<n ; i++$) ...
for (int $i=1 ; i<n ; i *=2$) ...

Sequences of statements

What's the complexity here?
(Assume that the loop bodies are O(1))
for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}++$) ...
for (int i = 1; i < n; i *= 2) ...
First loop: O(n) Second loop: $\mathbf{O}(\log \mathbf{n})$ Total: $\mathrm{O}(\mathrm{n})+\mathrm{O}(\log \mathrm{n})=\mathbf{O}(\mathbf{n})$
For sequences, add the complexities!

A familiar scene

int[] array = \{\};
for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}++$) \{ int[] newArray =
new int[array.length+1];
for (int j = 0; j < i ; j++) newArray[j] = array[j];
newArray = array;
\}

Assume that
each statement
takes $\mathrm{O}(1)$ time

A familiar scene

Rest of loop body O(1),

so loop body
int[] array $=\{ \} ;$
for (int $i=0 ; i<n ; i \quad \begin{gathered}\text { soloop body } \\ (1)+O(n)=\mathbf{O}(\mathbf{n})\end{gathered}$ int[] newirray =
new int[cray.length+1];
for (int j $0 ; j<i ; j++$) newArray[i $=\operatorname{arrayLi}[$;
newArray =

Outer loop:
n iterations, O(n) body, so $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Inner loop O(n)

A familiar scene, take 2

int[] array = \{\};
for (int i = 0; i < n; i+=100) \{ int[] newArray = new int[array.length+100]; for (int j = 0; j < i ; j++) newArray[j] = array[j]; newArray = array; \}

A familiar scene, take 2

int[] array = \{\};
for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; i+=100) \{ int[] new'rray =
new int[cray.length+100];
for (int j 0; j < i; j++) newArray[j = array[j];
newArray $=$ Outer loop:
\}
$\mathrm{n} / 100$ iterations, which is $\mathrm{O}(\mathrm{n})$
O(n) body,
so $\mathbf{O}\left(\mathbf{n}^{2}\right)$ still

A familiar scene, take 3

int[] array = \{0\};
for (int $\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; $\mathbf{i *}=2$) \{
int[] newArray =
new int[array.length*2];
for (int j = 0; $\mathrm{j}<\mathrm{i}$; j++) newArray[j] = array[j];
newArray = array;
\}

A familiar scene, take 3

int[] array = \{0\};
for (int $\mathrm{i}=1$; i <= n; $\mathbf{i * = 2)}$ \{ int[] newArray =
new int[array.length*2];
for (int j = 0; j < i; j++) newArray[j] array[j];
newArray =

Outer loop:
$\log n$ iterations,

$$
\begin{aligned}
& \text { O(n) body, } \\
& \text { so } \mathbf{O}(\mathbf{n} \log \mathbf{n}) \text { ?? }
\end{aligned}
$$

A familiar scene, take 3

int[] array = \{0\};
for (int $\mathrm{i}=1$; i <= n; $\mathbf{i * = 2)}$ \{ int[] newArray = new int[array.length*2]; for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{i} ; \mathrm{j}++$) newArray[j] array[j];

A complication

Our algorithm has O(n) complexity, but we've calculated $O(n \log n)$

- An overestimate, but not a severe one (If $\mathrm{n}=1000000$ then $\mathrm{n} \log \mathrm{n}=20 \mathrm{n}$)
- This can happen but is normally not severe
- To get the right answer: do the maths

Good news: for "normal" loops this doesn't happen

- If all bounds are n , or n^{2}, or another loop variable, or a loop variable squared, or ...
Main exception: loop variable i doubles every time, body complexity depends on i

Doing the sums

In our example:

- The inner loop's complexity is $\mathrm{O}(\mathrm{i})$
- In the outer loop, i ranges over $1,2,4,8, \ldots, 2^{\text {a }}$

Instead of rounding up, we will add up the time for all the iterations of the loop:

$$
\begin{aligned}
& 1+2+4+8+\ldots+2^{a} \\
& =2 \times 2^{a}-1<2 \times 2^{a}
\end{aligned}
$$

Since $2^{\mathrm{a}} \leq \mathrm{n}$, the total time is at most 2 n , which is $O(n)$

A last example

for (int $\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; i *= 2) \{ for (int $j=0 ; j<n * n ; j++$) for (int k = 0; k <= j; k++) // O(1)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{n}$; $\mathrm{j}+\mathrm{+}$) // O(1)
\}

The outer loop runs $\mathrm{O}(\log \mathrm{n})$ times

A last example

The j-loop
runs n^{2} times
for (int i $=1$; i <= n; i *= for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{n} * \mathrm{n}$; $\mathrm{j}++$) for (int k = 0; k <= j; k++) // O(1)
for (int $\mathrm{j}=0$: $\mathrm{j}<\mathrm{n}$; $\mathrm{j}+\mathrm{+}$

$$
/ / 0(1)
$$

\}

This loop is $\mathrm{O}(\mathrm{n})$
$k<=j<n * n$ so this loop is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

> Total: $O(\log n) \times\left(O\left(n^{2}\right) \times O\left(n^{2}\right)+O(n)\right)$
> $=O\left(n^{4} \log n\right)$

Life without big O notation

What happens without big O?

How many steps does this function take on an array of length n (in the worst case)?
boolean unique(Object[] a) \{
for (int i = 0; i < a.length; i++)
for (int $\mathrm{j}=0$; j < a.length; j++) if (a[i].equals(a[j]) \&\& i != j) return false;
return true;

Assume that loop body takes 1 step

What happens without big O?

How many steps does th fuan array of lengti - (in
on take on t ie)?
boolean unique(0
for (int i $\begin{gathered}\text { Outer loop runs } n \text { times } \\ \text { Each time inner loop }\end{gathered}+$)
for (in+ runs n times ; j^{++})
if (aL. Total: $n \times n=n^{2} \times=j$)
ret
return true;

What about this one?

boolean unique(Object[] a) \{
for(int i = 0; i < a.length; i++)

$$
\begin{aligned}
& \text { for (int } j=0 ; j<i ; j++ \text {) } \\
& \text { if (a[i].equals }(a[j]),
\end{aligned}
$$ return false;

return true;

Loop runs to i instead of n

Some hard sums

When $i=0$, inner loop runs 0 times
When $i=1$, inner loop runs 1 time

When $i=n-1$, inner loop runs $n-1$ times

Total:

- $\sum_{i=0}^{n-1} i=0+1+2+\ldots+n-1$
which is $n(n-1) / 2$

What about this one?

boolean unique(Object[] a) \{
for(int i = 0; i < a.leng ${ }^{\prime}$; ${ }^{\text {i++ }}$)

$$
\begin{aligned}
& \text { for (int } j=0 \text {; } \\
& \text { if (a[i].ennn) }
\end{aligned}
$$ return fal

Answer: $n(n-1) / 2$ return true;

What about this one?

void something(Object[] a) \{
for(int i = 0; i < a.length; i++)

$$
\text { for (int } j=0 ; j<i ; j++ \text {) }
$$

for (int k = 0; k < j; k++)
"something that takes 1 step"
\}

More hard sums

$$
\sum_{n=0}^{1-1} \sum_{i=1}^{n} \sum_{i=0}^{1} 1
$$

Inner loop:
k goes from 0 to $j-1$

Outer loop:
i goes from 0 to $n-1$
Middle loop:
j goes from 0 to i-1

Counts: how many values i, j, k where $0 \leq i<n, 0 \leq j<i, 0 \leq k \leq j$

More hard sums

$$
\sum_{n=0}^{1-1} \sum_{i=1} \sum_{i=1} 1
$$

I have no idea
how to solve this! Wolfram Alpha says it's

$$
n(n-1)(n-2) / 6
$$

Counts: how many values i, j, k where $0 \leq i<n, 0 \leq j<i, 0 \leq k \leq j$

What about this one?

void something(Object[] a) \{
for(int i = 0; i < a.lengt ${ }^{\prime}$; i++) for (int $j=0$; $i<\quad+\cdots$
for (int k -

> Answer:
"somethine $\begin{gathered}n(n-1)(n-2) / 6, \quad \text { apparently } \\ \text { atep" }\end{gathered}$
\}

A trick: sums are almost integrals

$$
\sum_{x=a}^{b} f(x) \approx \int_{a}^{b} f(x)
$$

For example:

$$
\sum_{i=0}^{n} i=n(n+1) / 2 \quad \int_{0}^{n} x d x=n^{2} / 2
$$

Not quite the same, but close!
This trick is accurate enough to give you the right complexity class - good to know (not used in the course though) Also see: "Finite calculus: a tutorial for solving nasty sums", which gives calculus-like rules for solving sums exactly

Big O in retrospect

We lose some precision by throwing away constant factors

- ...you probably do care about a factor of 100 performance improvement
On the other hand, life gets much simpler:
- A small phrase like $O\left(n^{2}\right)$ tells you a lot about how the performance scales when the input gets big
- It's a lot easier to calculate big-O complexity than a precise formula (lots of good rules to help you)
Big O is normally a good compromise!
- Occasionally, need to do hard sums anyway :(

