Hash tables

Hash tables naively

A hash table implements a set or map The plan: take an array of some size k Define a hash function that maps values to indices in the range $\{0, \ldots, \mathrm{k}-1\}$

- Example: if the values are integers, hash function might be $h(n)=n \bmod k$
To find, insert or remove a value x, put it in index $h(x)$ of the array
- Avoid searching through the whole array!

Hash tables naively, example

Implementing a set of integers, suppose we take a hash table of size 5 and a hash function $h(n)=n \bmod 5$

$$
\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & \\
\hline 5 & & 17 & 8 & & \begin{array}{l}
\text { This hash table contains } \\
\{5,8,17\}
\end{array}
\end{array}
$$

Inserting 14 gives:

$$
\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
5 & & 17 & 8 & 14
\end{array}
$$

Similarly, if we wanted to find 8, we would look it up in index 3

A problem

This idea doesn't work.
What if we want to insert 12 into the set?

$$
\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
5 & & 17 & 8 &
\end{array}
$$

We should store 12 at index 2, but there's already something there!
This is called a collision
Real hash tables are naive hash tables plus tricks for dealing with and avoiding collisions!

Handling collisions: chaining

Instead of an array of elements, have an array of linked lists (chains)
To add an element, calculate its hash and insert it into the list at that index

$$
01234
$$

$$
\begin{array}{cc|}
\downarrow & \downarrow \\
5 & 17 \\
\hline
\end{array}
$$

Handling collisions: chaining

Instead of an array of elements, have an array of linked lists (chains)
To add an element, calculate its hash and insert it into the list at that index

$$
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & \\
& & & & \text { Inserting 12 } \\
\downarrow & \downarrow & \downarrow & & \\
\text { into the table }
\end{array}
$$

Performance of chained hash tables

Chained hash tables are fast if the chains are small

- If the size is bounded, operations are $\mathrm{O}(1)$ time But if the chains get big, everything gets slow
- Can degrade to $\mathrm{O}(\mathrm{n})$ in the worst case

There are two cases when this can happen! We have to avoid both of them.

Performance of chained hash tables

Case one: the hash table is too full

- If we try to store $1,000,000$ values in an array of size 5 , some chains will be 200,000 long
Solution: expand the hash table
- If the hash table gets too full (a high load factor), allocate a new array about twice as big (rehashing)
- load factor = number of elements / size of array

Problem: $\mathrm{h}(\mathrm{x})$ is specific to a particular size of array

- Allow the hash function to return an arbitrary integer (the hash code of x) and then take it modulo the array size: $h(x)=x$.hashCode() mod array.size
- Hash function of an integer will just be the integer itself

Performance of chained hash tables

Case two: the hash function is lousy

- Worst case: $\mathrm{h}(\mathrm{x})$ is a constant function, e.g. $h(x)=0$
- Then all elements will end up in the same chain!

The hash function must distribute values evenly

- Each hash bucket has an equal chance of being chosen
- There are no observable patterns, e.g., easy ways to construct two values which always have the same hash
In other words, it should look like the hash function returns a random bucket

Chained hash tables - the theory

We need:

- to resize the hash table when it gets too full
- a hash function which appears to be random (no patterns, equal distribution)
If we do that, the average chain size will be constant and we get expected $\mathrm{O}(1)$ performance for insert/lookup/delete!
- Complexity analysis uses probability theory

When should we resize the hash table?

- If the load factor is 3 (number of elements $=$ array size \times 3), each operation needs on average ~ 2.5 comparisons
- Pick some constant load factor, resize when it reaches that

A slightly awkward problem

In reality, the hash function does not return a random hash code!

- Common hash functions can have patterns

This breaks the nice theory we have. Here is one problem:

- If we double the size of the array when resizing, the array size will always be even
- If we then insert only even numbers into the hash table, only the even buckets will be used
To fix this, we make the array size always be a prime number (while roughly doubling it each time) - this masks patterns in the hash function

Chained hash tables - summary

Start with a naive hash table
Add chaining
Double the size of the array when the load factor is too high...

- ...but make sure the array size is always prime Now you have a chained hash table!
- O(1) expected complexity for all operations

But how should we design hash functions?

Designing hash functions

A good hash function should distribute values evenly

- $\mathrm{h}(\mathrm{x})$ has a roughly equal chance of being any particular number
- That way, all chains will be roughly the same length!
- Also, similar values should not have similar hash codes
Defining good hash functions is a black art!
- Weird heuristics that are semi-backed-up by theory

We'll settle for: unlikely to insert many elements with the same hash

Defining a good hash function

What is bad about the following hash function on strings?

Add together the character code of each character in the string
(character code of $a=97, b=98, c=99$ etc.)
Maps e.g. bass and bart to the same hash code! $(\mathrm{s}+\mathrm{s}=\mathrm{r}+\mathrm{t})$
Any anagrams will have the same hash code Similar strings will be mapped to nearby hash codes - does not distribute strings evenly

A hash function on strings

An idea: map strings to integers as follows:

$$
128^{n}+s_{0} \cdot 128^{n-1}+s_{1} \cdot 128^{n-2}+\ldots+s_{n-1}
$$

where s_{i} is the code of the
character at index i
If all characters are ASCII
(character code 0 -127), each string is mapped to a different integer!

An analogy

Suppose we want to define a hash function for lists of digits from 0-9:

- [0,9,3,4,2,1] etc.

Idea: write out the digits as a single number with a leading 1 :

- hash $([0,9,3,4,2,1])=1093421$
(Without the leading 1 we would get the same hash for e.g. [0,1] and [1])
The hash function on strings is doing exactly this, only working in base 128 instead of base 10

The problem

For performance, we will calculate the hash using machine integers so the calculation

$$
128^{n}+s_{0} \cdot 128^{n-1}+s_{1} \cdot 128^{n-2}+\ldots+s_{n-1},
$$

will happen modulo 2^{32} (integer overflow)
So the hash will only use the last few characters!
Solution: replace 128 with another number, e.g. 33
$33^{n}+\mathrm{s}_{0} \cdot 33^{n-1}+\mathrm{s}_{1} \cdot 33^{n-2}+\ldots+\mathrm{s}_{n-1}$
This is (almost) what Java uses for strings

Hashing composite values

class C \{ A a; B b; \}
Use the same approach as for strings! $33^{2}+33 \times h(a)+h(b)$
This comes out quite nicely in code too:
int hash = 1;
hash $=$ hash*33 + a.hashCode(); hash $=$ hash*33 + b.hashCode();

Hash functions

This is called Bernstein hashing, it's only one way of defining hash functions

- Bernstein discovered that using 33 as the constant gives good distribution
- Why? Nobody knows!

Many hash functions are inspired by random number generation algorithms

- The output of a good hash function should look random so there are many similarities
Often pretty ad hoc!
- Lots of experimentation involved

Linear probing

Another way of dealing with collisions is linear probing
Uses an array of values, like in the naive hash table
If you want to store a value at index i but it's full, store it in index $i+1$ instead! If that's full, try $i+2$, and so on ...if you get to the end of the array, wrap around to 0

Example of linear probing

Tom Dan Harry Sam Pete

Name	Hash	Hash \% 5
"Tom"	84274	4
"Dan"	68465	0
"Harry"	69496448	3
"Sam"	82879	4
"Pete"	2484038	3

Example of linear probing

Example of linear probing

Example of linear probing

		Pete	Name	Hash	Hash \% 5
			"Tom"	84274	4
			"Dan"	68465	0
Sam	Dan		"Harry"	69496448	3
			"Sam"	82879	4
	Harry		"Pete"	2484038	3
	Tom				

Example of linear probing

	Pete	Name	Hash	Hash \% 5
			"Tom"	84274

Example of linear probing

Name	Hash	Hash \% 5
"Tom"	84274	4
"Dan"	68465	0
"Harry"	69496448	3
"Sam"	82879	4
"Pete"	2484038	3

Example of linear probing

Searching with linear probing

To find an element under linear probing:

- Calculate the hash of the element, i
- Look at array[i]
- If it's the right element, return it!
- If there's no element there, fail
- If there's a different element there, search again at index $(i+1) \%$ array.size
We call a group of adjacent non-empty indices a cluster

Deleting with linear probing

Can't just remove an element...

Name	Hash	Hash \% 5
"Tom"	84274	4
"Dan"	68465	0
"Harry"	69496448	3
"Sam"	82879	4
"Poto"	74840.38	3

Deleting with linear probing

Instead, mark it as deleted
 (lazy deletion)

Name	Hash	Hash \% 5
"Tom"	84274	4
"Dan"	68465	0
"Harry"	69496448	3
"Sam"	82879	4
"Pata"	24840.38	3

The search algorithm should skip over XXXXXXX

Deleting with linear probing

It's useful to think of the invariant here:

- Linear chaining: each element is found at the index given by its hash code
- Linear probing: each element is found at the index given by its hash code, or a later index in the same cluster
Naive deletion will split a cluster in two, which may break the invariant
Hence the need for an empty value that does not mark the end of a cluster

Linear probing performance

To insert or find an element under linear probing, you might have to look through a whole cluster of elements
Performance depends on the size of these clusters:

- Small clusters - expected O(1) performance
- Almost-full array - $O(n)$ performance
- If the array is full, you can't insert anything!

Thus you need:

- to expand the array and rehash when it starts getting full
- a hash function that distributes elements evenly

Same situation as with linear chaining!

Linear probing vs linear chaining

In linear chaining, if you insert many values with the same hash, values with that hash become slower to access but other hashes are unaffected
In linear probing, you get a cluster and values with nearby hashes become slower to access too!
As the array gets close to 100% full, you get very long clusters in the hash table and performance becomes dreadful
Linear probing needs a much bigger array than linear chaining for the same performance
But: as you don't need to also create list nodes, you can create a bigger array in the same amount of memory

Probing vs chaining

load factor (\#elements / array size)	\#comparisons (linear probing)	\#comparisons (linear chaining)
0%	1.00	1.00
25%	1.17	1.13
50%	1.50	1.25
75%	$\mathbf{2 . 5 0}$	1.38
85%	3.83	1.43
90%	5.50	1.45
95%	10.50	1.48
100%	-	1.50
200%	-	2.00
300%	-	$\mathbf{2 . 5 0}$

Summary of hash table design

Several details to consider:

- Rehashing: resize the array when the load factor is too high
- A good hash function: need an even distribution
- Collisions: either chaining or probing
- Other alternatives to linear probing, e.g. quadratic probing
- Some sort of probing seems to be fastest

In return:

- Expected (average) O(1) performance if the hash function is random (there are no patterns)
- Better performance in practice than BSTs
- Disadvantage: hash tables are unordered so you can't get the elements in increasing order
Theoretical foundations of hash functions are a bit uncertain, but heuristics work well in practice

Bloom filters (not on exam)

Bloom filters

Suppose we want a data structure for a set of values, but we don't have enough memory to store all the values.
Sounds hopeless doesn't it?
With a Bloom filter we can get a set which supports:

- Insertion (not deletion)
- Membership testing with false positives: if it says yes, it might not be in the set, but if it says no it's definitely not in the set
By increasing the amount of memory used, we can get the false positive rate arbitrarily low
- 1% false positive rate using 10 bits per element

Why?

Example from "Programming Pearls":

- A spellchecker
- Dictionary is too big to fit in memory
- Use a Bloom filter, accept occasional misspellings

A pre-filter for an on-disk map:

- where we expect many searches for values that are not in the map
- Check the Bloom filter first, if it says no, the value is definitely not in the map
- Otherwise, check the on-disk map

Special-purpose but pretty cool

Naive Bloom filters

Instead of a hash table of size m, we make an array of m bits
Initially, all bits are set to 0
To insert χ into the Bloom filter:

- Calculate $h(x) \bmod k$, as in a hash table
- Set that bit in the array to 1

To check if x is in the Bloom filter:

- Calculate $h(x) \bmod m$
- Check if that bit in the array is 1

Just like a normal hash table - but instead of a chain we store a single bit!

Naive Bloom filters - false positives

Suppose that (e.g.) half of the bits in the array are set to 1
Then looking up a value which is not in the Bloom filter, there is a chance of 50% it returns true anyway
Not so good!
If we want a 1% false positive rate, we'd need only 1% of the bits in the array set to 1

- So we need about 100 bits of memory per item inserted
We can do better!

Bloom filters

Have several hash functions $\mathrm{h}_{1} \ldots \mathrm{~h}_{\mathrm{k}}$
As before, we have an array of size m
To insert x into the Bloom filter:

- Calculate $h_{1}(x) \bmod m, h_{2}(x) \bmod m, \ldots, h_{k}(x) \bmod m$
- Set all those bits to 1 !

To search for x in the Bloom filter:

- Calculate $h_{1}(x) \bmod m, h_{2}(x) \bmod m, \ldots, h_{k}(x) \bmod m$
- Return true if all those bits are 1 !

Bloom filters - false positives

Suppose that half of the bits in the array are set to 1 , and we have k hash functions
Now suppose we look up a value x which is not in the Bloom filter
What is the chance of a false positive?

- There is a 50% chance that $h_{1}(x) \bmod m=1$
- and a 50% chance that $h_{2}(x) \bmod m=1$
- ...
- and a 50% chance that $h_{k}(x) \bmod m=1$

The chance that they all return 1 is one in 2^{k} !

Bloom filters - performance in practice

If we increase k, more bits in the array become 1. But:

- If we want half of the bits to be set to 1 , the required array size grows linearly in k
- But the probability of false positives decreases exponentially with k !
To get 1\% false positive rate, you need:
- 10 bits per item inserted
- 7 hash functions

So this is very space-efficient!

