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Hash tables naively

A hash table implements a set or map
The plan: take an array of some size k
Define a hash function that maps values to 
indices in the range {0,...,k-1}
● Example: if the values are integers, hash function 

might be h(n) = n mod k

To find, insert or remove a value x, put it 
in index h(x) of the array
● Avoid searching through the whole array!



  

Hash tables naively, example

Implementing a set of integers, suppose 
we take a hash table of size 5 and a hash 
function h(n) = n mod 5

Inserting 14 gives:

5 17 8
0 1 2 3 4

This hash table contains
{5, 8, 17}

145 17 8
0 1 2 3 4

Similarly, if we 
wanted to find 8, 
we would look it 
up in index 3



  

A problem

This idea doesn't work.
What if we want to insert 12 into the set?

We should store 12 at index 2, but there's 
already something there!
This is called a collision
Real hash tables are naive hash tables plus 
tricks for dealing with and avoiding collisions!

5 17 8
0 1 2 3 4



  

Handling collisions: chaining

Instead of an array of elements, have an 
array of linked lists (chains)
To add an element, calculate its hash and 
insert it into the list at that index

0 1 2 3 4

5 17 8



  

Handling collisions: chaining

Instead of an array of elements, have an 
array of linked lists (chains)
To add an element, calculate its hash and 
insert it into the list at that index

Inserting 12
into the table

0 1 2 3 4

5 17 8

12



  

Performance of chained hash tables

Chained hash tables are fast if the chains 
are small
● If the size is bounded, operations are O(1) time

But if the chains get big, everything gets 
slow
● Can degrade to O(n) in the worst case

There are two cases when this can 
happen! We have to avoid both of them.



  

Performance of chained hash tables

Case one: the hash table is too full
● If we try to store 1,000,000 values in an array of size 5, some 

chains will be 200,000 long

Solution: expand the hash table
● If the hash table gets too full (a high load factor), allocate a 

new array about twice as big (rehashing)
● load factor = number of elements / size of array

Problem: h(x) is specific to a particular size of array
● Allow the hash function to return an arbitrary integer (the 

hash code of x) and then take it modulo the array size:
h(x) = x.hashCode() mod array.size

● Hash function of an integer will just be the integer itself



  

Performance of chained hash tables

Case two: the hash function is lousy
● Worst case: h(x) is a constant function, e.g.

h(x) = 0
● Then all elements will end up in the same chain!

The hash function must distribute values 
evenly
● Each hash bucket has an equal chance of being chosen
● There are no observable patterns, e.g., easy ways to 

construct two values which always have the same hash

In other words, it should look like the hash 
function returns a random bucket



  

Chained hash tables – the theory

We need:
● to resize the hash table when it gets too full
● a hash function which appears to be random

(no patterns, equal distribution)

If we do that, the average chain size will be 
constant and we get expected O(1) performance 
for insert/lookup/delete!
● Complexity analysis uses probability theory

When should we resize the hash table?
● If the load factor is 3 (number of elements = array size × 

3), each operation needs on average  ~2.5 comparisons
● Pick some constant load factor, resize when it reaches that



  

A slightly awkward problem

In reality, the hash function does not return a 
random hash code!
● Common hash functions can have patterns

This breaks the nice theory we have. Here is one 
problem:
● If we double the size of the array when resizing, the array 

size will always be even
● If we then insert only even numbers into the hash table, 

only the even buckets will be used

To fix this, we make the array size always be a 
prime number (while roughly doubling it each 
time) – this masks patterns in the hash function



  

Chained hash tables – summary

Start with a naive hash table
Add chaining
Double the size of the array when the 
load factor is too high...
● ...but make sure the array size is always prime

Now you have a chained hash table!
● O(1) expected complexity for all operations

But how should we design hash 
functions?



  

Designing hash functions

A good hash function should distribute 
values evenly
● h(x) has a roughly equal chance of being any 

particular number
● That way, all chains will be roughly the same length!
● Also, similar values should not have similar hash 

codes

Defining good hash functions is a black art!
● Weird heuristics that are semi-backed-up by theory

We'll settle for: unlikely to insert many 
elements with the same hash



  

Defining a good hash function

What is bad about the following hash 
function on strings?

Add together the character code of each character in the 
string
(character code of a = 97, b = 98, c = 99 etc.)

Maps e.g. bass and bart to the same hash 
code! (s + s = r + t)
Any anagrams will have the same hash code
Similar strings will be mapped to nearby hash 
codes – does not distribute strings evenly



  

A hash function on strings

An idea: map strings to integers as follows:
128n + s0 · 128n-1 + s1 · 128n-2 + … + sn-1

where si is the code of the 
character at index i
If all characters are ASCII 
(character code 0 – 127), each 
string is mapped to a different 
integer!



  

An analogy

Suppose we want to define a hash function 
for lists of digits from 0-9:
● [0,9,3,4,2,1] etc.

Idea: write out the digits as a single number 
with a leading 1:
● hash([0,9,3,4,2,1]) = 1093421

(Without the leading 1 we would get the 
same hash for e.g. [0,1] and [1])
The hash function on strings is doing exactly 
this, only working in base 128 instead of 
base 10



  

The problem

For performance, we will calculate the hash 
using machine integers so the calculation

128n + s0 · 128n-1 + s1 · 128n-2 + … + sn-1,
will happen modulo 232 (integer overflow)
So the hash will only use the last few 
characters!
Solution: replace 128 with another number, 
e.g. 33

33n + s0 · 33n-1 + s1 · 33n-2 + … + sn-1

This is (almost) what Java uses for strings



  

Hashing composite values

class C { A a; B b; }

Use the same approach as for strings!
332 + 33 × h(a) + h(b)

This comes out quite nicely in code too:
int hash = 1;
hash = hash*33 + a.hashCode();
hash = hash*33 + b.hashCode();



  

Hash functions

This is called Bernstein hashing, it's only one 
way of defining hash functions
● Bernstein discovered that using 33 as the constant 

gives good distribution
● Why? Nobody knows!

Many hash functions are inspired by random 
number generation algorithms
● The output of a good hash function should look 

random so there are many similarities

Often pretty ad hoc!
● Lots of experimentation involved



  

Linear probing

Another way of dealing with collisions is 
linear probing
Uses an array of values, like in the naive 
hash table
If you want to store a value at index i but 
it's full, store it in index i+1 instead!
If that's full, try i+2, and so on
...if you get to the end of the array, wrap 
around to 0



  

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Tom Dan Harry Sam Pete

[0]
[1]
[2]
[3]
[4]

[0]
[1]
[2]
[3]
[4]



  

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Sam Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]



  

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Sam

Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]



  

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Sam

Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]



  

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]



  

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]



  

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Pete Pete

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4] To find “Pete” (hash 3),

you must start at index 3
and work your way all the

way around to index 2



  

Searching with linear probing

To find an element under linear probing:
● Calculate the hash of the element, i
● Look at array[i]
● If it's the right element, return it!
● If there's no element there, fail
● If there's a different element there, search again 

at index (i+1) % array.size

We call a group of adjacent non-empty 
indices a cluster



  

Deleting with linear probing

Can't just remove
an element...

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Pete Pete

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

If we remove Harry,
Pete will be in the wrong cluster
and we won't be able to find him



  

Deleting with linear probing

Instead, mark it
as deleted
(lazy deletion)

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Pete Pete

 XXXXXXX XXXXXXX

 Tom Tom

[0]
[1]
[2]
[3]
[4]

The search algorithm
should skip over XXXXXXX 



  

Deleting with linear probing

It's useful to think of the invariant here:
● Linear chaining: each element is found at the 

index given by its hash code
● Linear probing: each element is found at the 

index given by its hash code, or a later index in the 
same cluster

Naive deletion will split a cluster in two, 
which may break the invariant
Hence the need for an empty value that 
does not mark the end of a cluster



  

Linear probing performance

To insert or find an element under linear probing, 
you might have to look through a whole cluster of 
elements
Performance depends on the size of these clusters:
● Small clusters – expected O(1) performance
● Almost-full array – O(n) performance
● If the array is full, you can't insert anything!

Thus you need:
● to expand the array and rehash when it starts getting full
● a hash function that distributes elements evenly

Same situation as with linear chaining!



  

Linear probing vs linear chaining

In linear chaining, if you insert many values with the 
same hash, values with that hash become slower to 
access but other hashes are unaffected
In linear probing, you get a cluster and values with 
nearby hashes become slower to access too!
As the array gets close to 100% full, you get very long 
clusters in the hash table and performance becomes 
dreadful
Linear probing needs a much bigger array than linear 
chaining for the same performance
But: as you don't need to also create list nodes, you can 
create a bigger array in the same amount of memory



  

Probing vs chaining

load factor
(#elements / 

array size)

#comparisons 
(linear 

probing)

#comparisons 
(linear 

chaining)

0 % 1.00 1.00
25 % 1.17 1.13
50 % 1.50 1.25
75 % 2.50 1.38
85 % 3.83 1.43
90 % 5.50 1.45
95 % 10.50 1.48

100 % — 1.50

200 % — 2.00

300 % — 2.50



  

Summary of hash table design

Several details to consider:
● Rehashing: resize the array when the load factor is too high
● A good hash function: need an even distribution
● Collisions: either chaining or probing

– Other alternatives to linear probing, e.g. quadratic probing
– Some sort of probing seems to be fastest

In return:
● Expected (average) O(1) performance if the hash function is 

random (there are no patterns)
● Better performance in practice than BSTs
● Disadvantage: hash tables are unordered so you can't get the 

elements in increasing order

Theoretical foundations of hash functions are a bit 
uncertain, but heuristics work well in practice



Bloom filters
(not on exam)



Bloom filters

Suppose we want a data structure for a set of 
values, but we don't have enough memory to store 
all the values.
Sounds hopeless doesn't it?
With a Bloom filter we can get a set which supports:
● Insertion (not deletion)
● Membership testing with false positives:

if it says yes, it might not be in the set,
but if it says no it's definitely not in the set

By increasing the amount of memory used, we can 
get the false positive rate arbitrarily low
● 1% false positive rate using 10 bits per element



Why?

Example from “Programming Pearls”:
● A spellchecker
● Dictionary is too big to fit in memory
● Use a Bloom filter, accept occasional misspellings

A pre-filter for an on-disk map:
● where we expect many searches for values that are 

not in the map
● Check the Bloom filter first, if it says no, the value is 

definitely not in the map
● Otherwise, check the on-disk map

Special-purpose but pretty cool



Naive Bloom filters

Instead of a hash table of size m,
we make an array of m bits
Initially, all bits are set to 0
To insert x into the Bloom filter:
● Calculate h(x) mod k, as in a hash table
● Set that bit in the array to 1

To check if x is in the Bloom filter:
● Calculate h(x) mod m
● Check if that bit in the array is 1

Just like a normal hash table – but instead of a 
chain we store a single bit!



Naive Bloom filters – false positives

Suppose that (e.g.) half of the bits in the 
array are set to 1
Then looking up a value which is not in the 
Bloom filter, there is a chance of 50% it 
returns true anyway
Not so good!
If we want a 1% false positive rate, we'd need 
only 1% of the bits in the array set to 1
● So we need about 100 bits of memory per item 

inserted

We can do better!



Bloom filters

Have several hash functions h1...hk

As before, we have an array of size m
To insert x into the Bloom filter:
● Calculate h1(x) mod m, h2(x) mod m, …, hk(x) mod m
● Set all those bits to 1!

To search for x in the Bloom filter:
● Calculate h1(x) mod m, h2(x) mod m, …, hk(x) mod m
● Return true if all those bits are 1!



Bloom filters – false positives

Suppose that half of the bits in the array are 
set to 1, and we have k hash functions
Now suppose we look up a value x which is 
not in the Bloom filter
What is the chance of a false positive?
● There is a 50% chance that h1(x) mod m = 1
● and a 50% chance that h2(x) mod m = 1
● ...
● and a 50% chance that hk(x) mod m = 1

The chance that they all return 1 is one in 2k!



Bloom filters – performance in practice

If we increase k, more bits in the array 
become 1. But:
● If we want half of the bits to be set to 1,

the required array size grows linearly in k
● But the probability of false positives decreases 

exponentially with k!

To get 1% false positive rate, you need:
● 10 bits per item inserted
● 7 hash functions

So this is very space-efficient!


