
Exam
Data structures DIT960

Time Monday 30th May 2016, 14:00–18:00

Place Hörsalsvägen

Course responsible Nick Smallbone, tel. 0707 183062

The exam consists of six questions. For each question you can get a G or a VG.

To get a G on the exam, you need to answer three questions to G standard.

To get a VG on the exam, you need to answer five questions to VG standard.

A fully correct answer for a question will get a VG. An answer with small
mistakes will get a G. An answer with large mistakes will get a U.

When a question asks for pseudocode, you can use a mixture of English and
programming notation to describe your solution, and should give enough detail
that a competent programmer could easily implement your solution.

Allowed aidsOne A4 piece of paper of notes, which should be handed in after
the exam. You may use both sides.

You may also bring a dictionary.

Note Begin each question on a new page.

Write your anonymous code (not your name) on every page.

Good luck!

1.The following algorithm takes as input an array, and returns the array
with all the duplicate elements removed. For example, if the input array is
{1, 3, 3, 2, 4, 2}, the algorithm returns {1, 3, 2, 4}.

S = new empty set
A = new empty dynamic array
for every element x in input array
 if not S.member(x) then
 S.insert(x)
 A.append(x)

return A

What is the big-O complexity of this algorithm, if the set is
implemented as:

a)an AVL tree?

b)a hash table?

For G: write the complexity in terms of n, the size of the input array.

For VG: write the complexity in terms of n and m, where n is the size of
the input array and m is the number of distinct elements in the array (i.e.
the number of elements ignoring duplicates).

2.Suppose you have the following hash table, implemented using linear
probing. The hash function we are using is the identity function, h(x) = x.

0 1 2 3 4 5 6 7 8

9 18 12 3 14 4 21

a)In which order could the elements have been added to the hash table?
There are several correct answers, and you should give all of them.
Assume that the hash table has never been resized, and no elements have
been deleted yet.

A 9, 14, 4, 18, 12, 3, 21

B 12, 3, 14, 18, 4, 9, 21

C 12, 14, 3, 9, 4, 18, 21

D 9, 12, 14, 3, 4, 21, 18

E 12, 9, 18, 3, 14, 21, 4

b)Remove 3 from the hash table, and write down how it looks afterwards.

c)For VG only: if we want a hash table that stores a set of strings, one
possible hash function is the string’s length, h(x) = x.length.

Is this a good hash function? Explain your answer.

3.Design an algorithm that takes two arrays, and returns true if the arrays
are disjoint, i.e. have no elements in common.

You may freely use standard data structures and algorithms from the
course in your solution, without explaining how they are implemented.

Write down your algorithm as pseudocode. You don’t need to write Java
code, but be precise – a competent programmer should be able to take
your description and easily implement it.

For a G: your algorithm should take O(n log n) time.

For a VG: your algorithm should take O(n log m) time, where n is the size
of the larger array and m is the size of the smaller array.
Hint for VG: since n ≥ m, this is the same as O(n log m + m log m).

4.Look at the 2-3 tree below.

a)Draw the 2-3 tree as an AA tree. Mark each node with its level.1

b)Insert 9 into the AA tree using the AA tree insertion algorithm.
Write down the final tree.

1 If you have studied the version of AA trees that uses colours, you may write down the
colours instead of the levels.

3 8

10111 6

5.A bidirectional map is a map which supports bidirectional lookup: given
a key, you can find the corresponding value, and given a value, you can
find the corresponding key.

In a bidirectional map there is always a one-to-one relationship between
keys and values. In other words, each key has exactly one value, and each
value is found under exactly one key.

It supports the usual map operations:

◦ new(): create a new, empty map

◦ insert(k, v): add the mapping k v→ to the map;
any existing mapping with key k or value v is removed.

◦ lookup(k): if the map contains a mapping k v→ , return v

◦ delete(k): if the map contains a mapping k v→ , delete it

plus the following reverse lookup operation:

◦ rlookup(v): if the map contains a mapping k v→ , return k

The following example shows what the various operations do.

Operation Result

new() Map is {}

insert(1,2) Map is {1 2}→

insert(3,4) Map is {1 2, 3 4}→ →

lookup(1) Returns 2

insert(4,2) Map is {3 4, 4 2}.→ →

Notice that the mapping 1 2 is replaced by 4 2.→ →

rlookup(2) Returns 4

delete(4) Map is {3 4}→

We can implement a bidirectional map using two maps, each
implemented as e.g. an AA tree:

◦ forward is a map from keys to values.
In the example above, it contains 3 4 and 4 2.→ →

◦ back is a map from values to keys.
In the example above, it contains 4 3 and 2 4.→ →

The invariant is that the two maps always contain the same data:
forward contains the mapping k v→ , if and only if back contains the
mapping v k→ .

We can then implement new, lookup and rlookup as follows:

◦ new: set forward and back to be empty AA trees

◦ lookup(k): look up k in forward using the BST lookup algorithm

◦ rlookup(v): look up v in back using the BST lookup algorithm

Your task is to implement the remaining operations, insert and delete,
with O(log n) complexity.

Be careful: the algorithm is more complicated than it seems. Be extra
careful that you maintain the data structure invariant. It’s also a good
idea to test your solution on the previous page’s example.

Give pseudocode for each of the operations. You don’t need to write Java
code, but be precise – a competent programmer should be able to take
your description and easily implement it..

You may freely use standard data structures and algorithmsfrom the
course in your solution, including insertion/lookup/deletion in a map,
without explaining how they are implemented.

6.We can think of a tree as being a special kind of directed graph. To model
a tree as a graph, we make the nodes of the tree become nodes in the
graph, and draw an edge from a parent node to each of its children.

The drawing on the left shows a tree as a graph; the other three directed
graphs do not correspond to a tree.

A tree Not a tree Not a tree Not a tree

Suppose we want to check if a given directed graph corresponds to a tree.
What properties should we check that the graph has?Write down a list of
properties such that, if a directed graph has those properties, it must be a
tree. You can refer to standard properties of graphs in your answer
without explaining them.

http://www.xkcd.com/1667

