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Binary search trees

A binary search tree (BST) is a binary tree 
where each node is greater than all its left 
descendants, and less than all its right 
descendants
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Searching in a BST

Finding an element in a BST is easy, 
because by looking at the root you can 
tell which subtree the element is in
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of owl

lemur must be
in right subtree

of hamster



  

Searching in a binary search tree

To search for target in a BST:
● If the target matches the root node's data, we've 

found it
● If the target is less than the root node's data, 

recursively search the left subtree
● If the target is greater than the root node's data, 

recursively search the right subtree
● If the tree is empty, fail

A BST can be used to implement a set, or 
a map from keys to values



  

Inserting into a BST

To insert a value into a BST:
● Start by searching for the value
● But when you get to null (the empty tree), make a 

node for the value and place it there
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Deleting from a BST

To delete a value into a BST:
● Find the node containing the value
● If the node is a leaf, just remove it
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To delete wolf,
just remove

this node from
the tree 



  

Deleting from a BST, continued

If the node has one child, replace the node 
with its child
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To delete penguin,
replace it in the
tree with wolf



  

Deleting from a BST

To delete a value from a BST:
● Find the node
● If it has no children, just remove it from the tree
● If it has one child, replace the node with its child
● If it has two children...?

Can't remove the node without removing its 
children too!



  

Deleting a node with two children

Delete the biggest value from the node's left 
subtree and put this value [why this one?] 
in place of the node we want to delete
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with monkey
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Deleting a node with two children

Delete the biggest value from the node's left 
subtree and put this value [why this one?] 
in place of the node we want to delete

The root is
now monkey
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Deleting a node with two children

Here is the most complicated case:
To delete

monkey, replace
it by lemur
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child! Put horse

where lemur was



  

Deleting a node with two children

Here is the most complicated case:
To delete

monkey, replace
it by lemur
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Deleting a node with two children

Here is the most complicated case:
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A bigger example

What happens if we delete
is? cow? rat?



  

Deleting a node with two children

Deleting rat, we replace it with priest; 
now we have to delete priest which has a 
child, morn



  

Deleting a node with two children

Find and delete the biggest value in the left 
subtree and put that value in the deleted 
node
● Using the biggest value preserves the 

invariant (check you understand why)
● To find the biggest value: repeatedly 

descend into the right child until you find 
a node with no right child

● The biggest node can't have two children, 
so deleting it is easier



  

Complexity of BST operations

All our operations are O(height of tree)
This means O(log n) if the tree is 
balanced, but O(n) if it's unbalanced (like 
the tree on the right)
● how might we get

this tree?

Balanced BSTs add an
extra invariant that makes
sure the tree is balanced
● then all operations are O(log n)



  

Summary of BSTs

Binary trees with BST invariant
Can be used to implement sets and maps
● lookup: can easily find a value in the tree
● insert: perform a lookup, then put the new value at the 

place where the lookup would stop
● delete: find the value, then remove its node from the tree – 

several cases depending on how many children the node has

Complexity:
● all operations O(height of tree)
● that is, O(log n) if tree is balanced, O(n) if unbalanced
● inserting random data tends to give balanced trees, 

sequential data gives unbalanced ones



AVL trees



  

Balanced BSTs: the problem

The BST operations take O(height of tree), so 
for unbalanced trees can take O(n) time



  

Balanced BSTs: the solution

Take BSTs and add an extra invariant 
that makes sure that the tree is balanced
● Height of tree must be O(log n)
● Then all operations will take O(log n) time

One possible idea for an invariant:
● Height of left child = height of right child

(for all nodes in the tree)
● Tree would be sort of “perfectly balanced”

What's wrong with this idea?



  

A too restrictive invariant

Perfect balance is too restrictive!
Number of nodes can only be 1, 3, 7, 15, 
31, ... owlowl
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pandapanda



  

AVL trees – a less restrictive invariant

The AVL tree is the first balanced BST 
discovered (from 1962) – it's named after 
Adelson-Velsky and Landis
It's a BST with the following invariant:
● The difference in heights between the left and 

right children of any node is at most 1
● (compared to 0 for a perfectly balanced tree)

This makes the tree's height O(log n), so 
it's balanced



  

Example of an AVL tree
(from Wikipedia)

12 23 54 76

9 14 19 67

50

17 72

Left child height 2
Right child height 1Left child height 2

Right child height 2

Left child height 1
Right child height 0



  

Why are these not AVL trees?



  

Why are these not AVL trees?

Left child height 0
Right child height 8



  

Why are these not AVL trees?

Left child height 1
Right child height 3



  

Rotation

Rotation rearranges a BST by moving a 
different node to the root, without 
changing the BST's contents

(pic from Wikipedia)



  

Rotation

We can strategically use rotations to 
rebalance an unbalanced tree.
This is what most balanced BST variants 
do!

Height of 4

Height of 3



  

AVL insertion

Start by doing a BST insertion
● This might break the AVL (balance) invariant

Then go upwards from the newly-inserted 
node, looking for nodes that break the 
invariant (unbalanced nodes)
If you find one, rotate it to fix the balance
There are four cases depending on how 
the node became unbalanced



  

Case 1: a left-left tree

50

c

25

ba

Each pink triangle
represents an

AVL tree
with height k

The purple represents
an insertion that has
increased the height

of tree a to k+1

Notice that the tree
was balanced

before the purple
bit was added



  

Case 1: a left-left tree

50

c
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ba

Height kHeight k+2

Left height minus
right height = 2:

invariant broken!



  

Case 1: a left-left tree
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This is called a
left-left tree

because both the root and
the left child are deeper

on the left

To fix it we do a
right rotation



  

Balancing a left-left tree, afterwards

50

c

25

b

a

Height k+1 Height k+1

Invariant
restored!



  

Case 2: a right-right tree

25

a

50

b c

Mirror image of left-left tree
Can be fixed with

left rotation



  

Case 3: a left-right tree
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ba

Height kHeight k+2

Left height minus
right height = 2:

invariant broken!



  

Case 3: a left-right tree
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ba We can't fix this with
one rotation

Let's look at b's
subtrees b

L
 and b

R



  

Case 3: a left-right tree
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Rotate 25-subtree to the left

40

bRbL

Height k-1



  

Case 3: a left-right tree

50

c
25

a

We now have a left-left tree!
So we can fix it by

rotating the whole tree
to the right

40

bR

bL

Height k+2 Height kHeight k+2

Height k+1



  

Case 3: a left-right tree

50

c

25

a

40

bRbL

Balanced!
Notice it works whichever

of b
L
 and b

R
 has the

extra height



  

Case 4: a right-left tree

25

a

50

b c

Mirror image of
left-right tree



  

How to identify the cases

Left-left (extra height in left-left grandchild):
● height of left-left grandchild = k+1

height of left child = k+2
height of right child = k

● Rotate the whole tree to the right

Left-right (extra height in left-right grandchild):
● height of left-right grandchild = k+1

height of left child = k+2
height of right child = k

● First rotate the left child to the left
● Then rotate the whole tree to the right

Right-left and right-right: symmetric

Algorithm uses
heights of subtrees
to determine case



  

The four cases

(picture from Wikipedia)
The numbers in the
diagram show the balance
of the tree: left height
minus right height
To implement this
efficiently, record the
balance in the nodes and
look at it to work out
which case you're in
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Example: the quick brown fox
jumps over a lazy dog

Insert “brown” into “the quick”

the

quick

brown

Left-left tree!
Rotate right



  

Example: the quick brown fox
jumps over a lazy dog

Insert “brown” into “the quick”

the

quick

brown



  

Example: the quick brown fox
jumps over a lazy dog

Insert “jumps” into “the quick brown fox”

the

quick

brown

fox

jumps

Right-right tree!
(What node?)

Rotate left



  

Example: the quick brown fox
jumps over a lazy dog

Insert “jumps” into “the quick brown fox”

the

quick

fox

jumpsbrown



  

Example: the quick brown fox
jumps over a lazy dog

Insert “over” into “the quick brown fox 
jumps”

the

quick

fox

jumpsbrown

over

Left-right tree!
(quick →

fox →
jumps)

Rotate fox left...



  

Example: the quick brown fox
jumps over a lazy dog

Insert “over” into “the quick brown fox 
jumps”

the

quick

jumps

overfox ...then rotate
quick right

brown



  

Example: the quick brown fox
jumps over a lazy dog

Insert “over” into “the quick brown fox 
jumps”

quick

jumps

fox

thebrown over



  

Lazy deletion (not on exam)

Deleting from a BST is quite hard...
deleting from an AVL tree is really complicated!
● Loads of cases, super annoying

Alternative: lazy deletion
Keep the node, mark it as deleted!
● Search simply skips over the node
● Opportunistically re-use the node in insertion

If you mark a node with two children as deleted, 
searching can become expensive
● Need to search both children
● Use same trick as from BST deletion to handle this case!



  

Example: the quick brown fox
jumps over a lazy dog (not on exam)
Deleting “over”:

quick

jumps

dog

thebrown XXXfox

lazy



  

Example: the quick brown fox
jumps over a lazy dog (not on exam)
Deleting “jumps”:

quick

fox

dog

thebrown XXXXXX

lazy



  

Lazy deletion (not on exam)

In the lecture we discovered that doing 
lazy deletion just like this doesn't work!
● E.g., deleting fox will now no longer preserve the 

invariant

I think the correct invariant is: a deleted 
node's children must be deleted
Exercise: work out how to do insertion 
and deletion to preserve this invariant!



  

AVL trees

Use rotation to keep the tree balanced
● Worst case height 1.44 log2 n, normally close to log n – so lookups 

are quick

Insertion – BST insertion, then rotate to repair the 
invariant
Deletion (see Wikipedia if you're interested) – similar 
idea but a bit harder (more cases)
● or use lazy deletion

Implementation – see Haskell compendium on course 
website!
Visualisation:
● http://visualgo.net/
● https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

http://visualgo.net/
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

