
Binary search trees

horsehorse

Binary search trees

A binary search tree (BST) is a binary tree
where each node is greater than all its left
descendants, and less than all its right
descendants

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

horsehorse

Searching in a BST

Finding an element in a BST is easy,
because by looking at the root you can
tell which subtree the element is in

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

lemur must be
in left subtree

of owl

lemur must be
in right subtree

of hamster

Searching in a binary search tree

To search for target in a BST:
● If the target matches the root node's data, we've

found it
● If the target is less than the root node's data,

recursively search the left subtree
● If the target is greater than the root node's data,

recursively search the right subtree
● If the tree is empty, fail

A BST can be used to implement a set, or
a map from keys to values

Inserting into a BST

To insert a value into a BST:
● Start by searching for the value
● But when you get to null (the empty tree), make a

node for the value and place it there

horsehorse

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

monkeymonkey

Deleting from a BST

To delete a value into a BST:
● Find the node containing the value
● If the node is a leaf, just remove it

horsehorse

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

To delete wolf,
just remove

this node from
the tree

Deleting from a BST, continued

If the node has one child, replace the node
with its child

horsehorse

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

To delete penguin,
replace it in the
tree with wolf

Deleting from a BST

To delete a value from a BST:
● Find the node
● If it has no children, just remove it from the tree
● If it has one child, replace the node with its child
● If it has two children...?

Can't remove the node without removing its
children too!

Deleting a node with two children

Delete the biggest value from the node's left
subtree and put this value [why this one?]
in place of the node we want to delete

Delete owl
by replacing it
with monkey

Delete
monkeyhorsehorse

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

monkeymonkey

Deleting a node with two children

Delete the biggest value from the node's left
subtree and put this value [why this one?]
in place of the node we want to delete

The root is
now monkey

horsehorse

monkeymonkey

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

Deleting a node with two children

Here is the most complicated case:
To delete

monkey, replace
it by lemur

horsehorse

monkeymonkey

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

But lemur has a
child! Put horse

where lemur was

Deleting a node with two children

Here is the most complicated case:
To delete

monkey, replace
it by lemur

horsehorse

monkeymonkey

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

But lemur has a
child! Put horse

where lemur was

Deleting a node with two children

Here is the most complicated case:

lemurlemur

horsehorsegorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

A bigger example

What happens if we delete
is? cow? rat?

Deleting a node with two children

Deleting rat, we replace it with priest;
now we have to delete priest which has a
child, morn

Deleting a node with two children

Find and delete the biggest value in the left
subtree and put that value in the deleted
node
● Using the biggest value preserves the

invariant (check you understand why)
● To find the biggest value: repeatedly

descend into the right child until you find
a node with no right child

● The biggest node can't have two children,
so deleting it is easier

Complexity of BST operations

All our operations are O(height of tree)
This means O(log n) if the tree is
balanced, but O(n) if it's unbalanced (like
the tree on the right)
● how might we get

this tree?

Balanced BSTs add an
extra invariant that makes
sure the tree is balanced
● then all operations are O(log n)

Summary of BSTs

Binary trees with BST invariant
Can be used to implement sets and maps
● lookup: can easily find a value in the tree
● insert: perform a lookup, then put the new value at the

place where the lookup would stop
● delete: find the value, then remove its node from the tree –

several cases depending on how many children the node has

Complexity:
● all operations O(height of tree)
● that is, O(log n) if tree is balanced, O(n) if unbalanced
● inserting random data tends to give balanced trees,

sequential data gives unbalanced ones

AVL trees

Balanced BSTs: the problem

The BST operations take O(height of tree), so
for unbalanced trees can take O(n) time

Balanced BSTs: the solution

Take BSTs and add an extra invariant
that makes sure that the tree is balanced
● Height of tree must be O(log n)
● Then all operations will take O(log n) time

One possible idea for an invariant:
● Height of left child = height of right child

(for all nodes in the tree)
● Tree would be sort of “perfectly balanced”

What's wrong with this idea?

A too restrictive invariant

Perfect balance is too restrictive!
Number of nodes can only be 1, 3, 7, 15,
31, ... owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

hamsterhamster

pandapanda

AVL trees – a less restrictive invariant

The AVL tree is the first balanced BST
discovered (from 1962) – it's named after
Adelson-Velsky and Landis
It's a BST with the following invariant:
● The difference in heights between the left and

right children of any node is at most 1
● (compared to 0 for a perfectly balanced tree)

This makes the tree's height O(log n), so
it's balanced

Example of an AVL tree
(from Wikipedia)

12 23 54 76

9 14 19 67

50

17 72

Left child height 2
Right child height 1Left child height 2

Right child height 2

Left child height 1
Right child height 0

Why are these not AVL trees?

Why are these not AVL trees?

Left child height 0
Right child height 8

Why are these not AVL trees?

Left child height 1
Right child height 3

Rotation

Rotation rearranges a BST by moving a
different node to the root, without
changing the BST's contents

(pic from Wikipedia)

Rotation

We can strategically use rotations to
rebalance an unbalanced tree.
This is what most balanced BST variants
do!

Height of 4

Height of 3

AVL insertion

Start by doing a BST insertion
● This might break the AVL (balance) invariant

Then go upwards from the newly-inserted
node, looking for nodes that break the
invariant (unbalanced nodes)
If you find one, rotate it to fix the balance
There are four cases depending on how
the node became unbalanced

Case 1: a left-left tree

50

c

25

ba

Each pink triangle
represents an

AVL tree
with height k

The purple represents
an insertion that has
increased the height

of tree a to k+1

Notice that the tree
was balanced

before the purple
bit was added

Case 1: a left-left tree

50

c

25

ba

Height kHeight k+2

Left height minus
right height = 2:

invariant broken!

Case 1: a left-left tree

50

c

25

ba

This is called a
left-left tree

because both the root and
the left child are deeper

on the left

To fix it we do a
right rotation

Balancing a left-left tree, afterwards

50

c

25

b

a

Height k+1 Height k+1

Invariant
restored!

Case 2: a right-right tree

25

a

50

b c

Mirror image of left-left tree
Can be fixed with

left rotation

Case 3: a left-right tree

50

c

25

ba

Height kHeight k+2

Left height minus
right height = 2:

invariant broken!

Case 3: a left-right tree

50

c

25

ba We can't fix this with
one rotation

Let's look at b's
subtrees b

L
 and b

R

Case 3: a left-right tree

50

c

25

a

Rotate 25-subtree to the left

40

bRbL

Height k-1

Case 3: a left-right tree

50

c
25

a

We now have a left-left tree!
So we can fix it by

rotating the whole tree
to the right

40

bR

bL

Height k+2 Height kHeight k+2

Height k+1

Case 3: a left-right tree

50

c

25

a

40

bRbL

Balanced!
Notice it works whichever

of b
L
 and b

R
 has the

extra height

Case 4: a right-left tree

25

a

50

b c

Mirror image of
left-right tree

How to identify the cases

Left-left (extra height in left-left grandchild):
● height of left-left grandchild = k+1

height of left child = k+2
height of right child = k

● Rotate the whole tree to the right

Left-right (extra height in left-right grandchild):
● height of left-right grandchild = k+1

height of left child = k+2
height of right child = k

● First rotate the left child to the left
● Then rotate the whole tree to the right

Right-left and right-right: symmetric

Algorithm uses
heights of subtrees
to determine case

The four cases

(picture from Wikipedia)
The numbers in the
diagram show the balance
of the tree: left height
minus right height
To implement this
efficiently, record the
balance in the nodes and
look at it to work out
which case you're in

5

D

3

A

4

CB

Left Right Case Right Left Case

3

A

4

5

C D

B

Right Right Case

5

D

4

3

BA

C

Left Left Case

4

5

C D

Balanced

3

A B

4

5

C D

Balanced

3

A B

3

A

5

D

4

B C

-22

1-1

2 -2

1/0 -1/0

-1/0 1/0

Example: the quick brown fox
jumps over a lazy dog

Insert “brown” into “the quick”

the

quick

brown

Left-left tree!
Rotate right

Example: the quick brown fox
jumps over a lazy dog

Insert “brown” into “the quick”

the

quick

brown

Example: the quick brown fox
jumps over a lazy dog

Insert “jumps” into “the quick brown fox”

the

quick

brown

fox

jumps

Right-right tree!
(What node?)

Rotate left

Example: the quick brown fox
jumps over a lazy dog

Insert “jumps” into “the quick brown fox”

the

quick

fox

jumpsbrown

Example: the quick brown fox
jumps over a lazy dog

Insert “over” into “the quick brown fox
jumps”

the

quick

fox

jumpsbrown

over

Left-right tree!
(quick →

fox →
jumps)

Rotate fox left...

Example: the quick brown fox
jumps over a lazy dog

Insert “over” into “the quick brown fox
jumps”

the

quick

jumps

overfox ...then rotate
quick right

brown

Example: the quick brown fox
jumps over a lazy dog

Insert “over” into “the quick brown fox
jumps”

quick

jumps

fox

thebrown over

Lazy deletion (not on exam)

Deleting from a BST is quite hard...
deleting from an AVL tree is really complicated!
● Loads of cases, super annoying

Alternative: lazy deletion
Keep the node, mark it as deleted!
● Search simply skips over the node
● Opportunistically re-use the node in insertion

If you mark a node with two children as deleted,
searching can become expensive
● Need to search both children
● Use same trick as from BST deletion to handle this case!

Example: the quick brown fox
jumps over a lazy dog (not on exam)
Deleting “over”:

quick

jumps

dog

thebrown XXXfox

lazy

Example: the quick brown fox
jumps over a lazy dog (not on exam)
Deleting “jumps”:

quick

fox

dog

thebrown XXXXXX

lazy

Lazy deletion (not on exam)

In the lecture we discovered that doing
lazy deletion just like this doesn't work!
● E.g., deleting fox will now no longer preserve the

invariant

I think the correct invariant is: a deleted
node's children must be deleted
Exercise: work out how to do insertion
and deletion to preserve this invariant!

AVL trees

Use rotation to keep the tree balanced
● Worst case height 1.44 log2 n, normally close to log n – so lookups

are quick

Insertion – BST insertion, then rotate to repair the
invariant
Deletion (see Wikipedia if you're interested) – similar
idea but a bit harder (more cases)
● or use lazy deletion

Implementation – see Haskell compendium on course
website!
Visualisation:
● http://visualgo.net/
● https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

http://visualgo.net/
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

