Skew heaps



Heaps with merging

Another useful operation is merging two
heaps into one

To do this, let's go back to binary trees with

the heap property (no completeness):
8

18 29
PN /
20 28 39 66
/ \ \
37 32 89

We can implement the other priority queue
operations in terms of mergingl!



Insertion

To insert a single element:

o build a heap containing just that one element

e merge it into the existing heap!

E.g., inserting 12 ' |
A tree with
just one node
8
/\ |
18 29 12
7N 7\ T
20 28 39 66
/ \ \

37 32 89




Delete minimum

To delete the minimum element:
o take the left and right branches of the tree

 these contain every element except the smallest

e merge them!

E.g., deleting 8 from the previous heap

18 29
PN + /

20 28 39 66
/ \ \

37 32 89



Naive merging

How to merge these two heaps?

18 29

7N /7 N\

A = 20 28 B = 39 66
/ \ \
37 32 89

Idea: root of resulting heap must be 18

Take heap A. Pick one of its children.
Recursively merge B into that child.

Let's use A's right child for no particular
reason



Naive merging

To merge two non-empty heaps:
Pick the heap with the smallest root:

Y
A B

Let C be the other heap
Recursively merge B and C!
@ .c - @

<
A B A B+C




Example

18 < 29 so pick 18 as the root of the
merged tree

18 29
e N
20 28 39 66
/ \ + / \
37 32 /74 89



Naive merging

Recursively merge the right branch of 18
and the 29 tree




Naive merging

28 < 29 so pick 28 as the root of the
merged tree




Naive merging

Recursively merge the right branch of 28
and the 29 tree




Naive merging

29 < 32 so pick 29 as the root of the
merged tree




Naive merging

Recursively merge the right branch of 29
with 32

PN
20 28
/ \
37 29



Naive merging

Base case: merge 66 with the empty tree

18

PR
20 28
/ \
37 29
%
39
/\ \
74 89 66

Notice that the tree looks pretty “right-
heavy”



Worst case for naive merging

A right-heavy tree:

Unfortunately, you get this just by doing
insertions! So insert takes O(n) time...

How can we stop the tree from becoming
right-heavy?



Skew merging

In a skew heap, after making a recursive
call to merge, we swap the two children:

x +C = x - X
roo yo roo
A B A B+C B+C A

Amazingly, this small change completely
fixes the performance of merge!

We never end up with right-heavy trees.

We get O(log n) amortised complexity.



Naive merging in code

data Heap a =
Nil | Node a (Heap a) (Heap a)

root (Node x _ _) = X

Make sure that

—_— first argument has

merge X . Nil = x smallest root
merge Nil x = X |
merge X y

| root x > root y = merge y X
merge (Node x a b) ¢ =
Node x a (merge b ¢)




Skew merging in code

data Heap a =
Nil | Node a (Heap a) (Heap a)
root (Node x _ _) = X
merge x Nil = X
merge Nil x = X

merge X Yy
| root x > root y = merge y X
merge (Node x a b) ¢ =
Node x (merge b c¢) a



Example

One way to do skew merge is to first do
naive merge, then go up the tree
swapping left and right children...

18_ 29, LY

/

20 28 = 39 66 =P 20 28

/ \ / \ / \

37 32 74 89 37 29
!
39
/NN
4 89 66

Naive merge /




Example

...like this:
/18\ 18 /18\
%
20 28 == 5 g ==y 5
/ \ / \ / \
37 29 37 29 37 29
/7 '\ /7 '\ / '\
39 32 39 32 32 39
/\ \ N/ /" /\
74 89 66 74 89 66 66 74 89



...]like this:
18 18 18
PN PN S \20
20 28 — 20 28 —) %8 ]
\ /
37
37 29 37 29 29
/N /N 3{ N\
32 39 32 39 ’ 39
/7N /7 /\
66 74 89 66 74 89 66 74 89



Skew heaps

Implementation of priority queues:
 binary trees with heap property

» skew merging avoids right-heavy trees,
gives O(log n) amortised complexity

 other operations are based on merge
A good fit for functional languages:
 based on trees rather than arrays

Other data structures based on naive merging +
avoiding right heavy trees:

o leftist heaps (swap children when needed)

« meldable heaps (swap children at random)

See webpage for link to visualisation site!



