
Skew heaps

Heaps with merging

Another useful operation is merging two
heaps into one
To do this, let's go back to binary trees with
the heap property (no completeness):

We can implement the other priority queue
operations in terms of merging!

8

18 29

37 32 89

20 28 39 66

Insertion

To insert a single element:
● build a heap containing just that one element
● merge it into the existing heap!

E.g., inserting 12

8

18 29

37 32 89

20 28 39 66

+ 12

A tree with
just one node

Delete minimum

To delete the minimum element:
● take the left and right branches of the tree
● these contain every element except the smallest
● merge them!

E.g., deleting 8 from the previous heap

18 29

37 32 89

20 28 39 66+

Naive merging

How to merge these two heaps?

Idea: root of resulting heap must be 18
Take heap A. Pick one of its children.
Recursively merge B into that child.
Let's use A's right child for no particular
reason

18 29

37 32 89

20 28 39 66A = B =

Naive merging

To merge two non-empty heaps:
Pick the heap with the smallest root:

Let C be the other heap
Recursively merge B and C!

x

A B

+ C → x

A B + C

x

A B

Example

18 < 29 so pick 18 as the root of the
merged tree

18 29

37 32 74 89

20 28 39 66+

Naive merging

Recursively merge the right branch of 18
and the 29 tree

18

29
37

32
74 89

20

28
39 66+

Naive merging

28 < 29 so pick 28 as the root of the
merged tree

18

29
37

32
74 89

20

28
39 66+

Naive merging

Recursively merge the right branch of 28
and the 29 tree

18

29
37

32

74 89

20

39 66+
28

Naive merging

29 < 32 so pick 29 as the root of the
merged tree

18

29
37

32

74 89

20

39 66+
28

Naive merging

Recursively merge the right branch of 29
with 32

18

2937

32
74 89

20

39
66+

28

Naive merging

Base case: merge 66 with the empty tree

Notice that the tree looks pretty “right-
heavy”

18

2937

32

74 89

20

39

66

28

Worst case for naive merging

A right-heavy tree:

Unfortunately, you get this just by doing
insertions! So insert takes O(n) time...
How can we stop the tree from becoming
right-heavy?

Skew merging

In a skew heap, after making a recursive
call to merge, we swap the two children:

Amazingly, this small change completely
fixes the performance of merge!
We never end up with right-heavy trees.
We get O(log n) amortised complexity.

x

A B

+ C → →x

A B + C

x

AB + C

Naive merging in code

data Heap a =
 Nil | Node a (Heap a) (Heap a)

root (Node x _ _) = x

merge x Nil = x
merge Nil x = x
merge x y
 | root x > root y = merge y x
merge (Node x a b) c =
 Node x a (merge b c)

Make sure that
first argument has

smallest root

Skew merging in code

data Heap a =
 Nil | Node a (Heap a) (Heap a)

root (Node x _ _) = x

merge x Nil = x
merge Nil x = x
merge x y
 | root x > root y = merge y x
merge (Node x a b) c =
 Node x (merge b c) a

Example

One way to do skew merge is to first do
naive merge, then go up the tree
swapping left and right children...

18 29

37 32 74 89

20 28 39 66+
18

2937

32

74 89

20

39

66

28→

Naive merge

Example

...like this:

18

2937

32

74 89

20

39

66

28 →
18

2937

32

74 89

20

39

66

28 →
18

2937

32

74 89

20

39

66

28

Example

...like this:

→ →
18

2937

32

74 89

20

39

66

28

18

29 37

32

74 89

20

39

66

28

18

2937

32

74 89

20

39

66

28

Skew heaps

Implementation of priority queues:
● binary trees with heap property
● skew merging avoids right-heavy trees,

gives O(log n) amortised complexity
● other operations are based on merge

A good fit for functional languages:
● based on trees rather than arrays

Other data structures based on naive merging +
avoiding right heavy trees:
● leftist heaps (swap children when needed)
● meldable heaps (swap children at random)

See webpage for link to visualisation site!

