
Skew heaps



  

Heaps with merging

Another useful operation is merging two 
heaps into one
To do this, let's go back to binary trees with 
the heap property (no completeness):

We can implement the other priority queue 
operations in terms of merging!
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Insertion

To insert a single element:
● build a heap containing just that one element
● merge it into the existing heap!

E.g., inserting 12
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Delete minimum

To delete the minimum element:
● take the left and right branches of the tree
● these contain every element except the smallest
● merge them!

E.g., deleting 8 from the previous heap
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Naive merging

How to merge these two heaps?

Idea: root of resulting heap must be 18
Take heap A. Pick one of its children. 
Recursively merge B into that child.
Let's use A's right child for no particular 
reason
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Naive merging

To merge two non-empty heaps:
Pick the heap with the smallest root:

Let C be the other heap
Recursively merge B and C!
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Example

18 < 29 so pick 18 as the root of the 
merged tree
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Naive merging

Recursively merge the right branch of 18 
and the 29 tree
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Naive merging

28 < 29 so pick 28 as the root of the 
merged tree
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Naive merging

Recursively merge the right branch of 28 
and the 29 tree
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Naive merging

29 < 32 so pick 29 as the root of the 
merged tree
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Naive merging

Recursively merge the right branch of 29 
with 32
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Naive merging

Base case: merge 66 with the empty tree

Notice that the tree looks pretty “right-
heavy”
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Worst case for naive merging

A right-heavy tree:

Unfortunately, you get this just by doing 
insertions! So insert takes O(n) time...
How can we stop the tree from becoming 
right-heavy?



  

Skew merging

In a skew heap, after making a recursive 
call to merge, we swap the two children:

Amazingly, this small change completely 
fixes the performance of merge!
We never end up with right-heavy trees.
We get O(log n) amortised complexity.
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Naive merging in code

data Heap a =
  Nil | Node a (Heap a) (Heap a)

root (Node x _ _) = x

merge x Nil = x
merge Nil x = x
merge x y
  | root x > root y = merge y x
merge (Node x a b) c =
  Node x a (merge b c)

Make sure that
first argument has

smallest root



  

Skew merging in code

data Heap a =
  Nil | Node a (Heap a) (Heap a)

root (Node x _ _) = x

merge x Nil = x
merge Nil x = x
merge x y
  | root x > root y = merge y x
merge (Node x a b) c =
  Node x (merge b c) a



  

Example

One way to do skew merge is to first do 
naive merge, then go up the tree 
swapping left and right children...
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Example

...like this:
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Skew heaps

Implementation of priority queues:
● binary trees with heap property
● skew merging avoids right-heavy trees,

gives O(log n) amortised complexity
● other operations are based on merge

A good fit for functional languages:
● based on trees rather than arrays

Other data structures based on naive merging + 
avoiding right heavy trees:
● leftist heaps (swap children when needed)
● meldable heaps (swap children at random)

See webpage for link to visualisation site!


