

Mergesort again

1. Split the list into two equal parts

5 3 9 2 8 7 3 2 1

] |

Mergesort again

2. Recursively mergesort the two parts

/7 3 2 1

5|sfefz]s
| |
2|3 s]s]s

Mergesort again

3. Merge the two sorted lists together

1T 2 3 4 7

N

—_—
— — =

] B B B

Quicksort

Mergesort is great... except that it's not
in-place

» So it needs to allocate memory

e And it has a high constant factor

Quicksort: let's do divide-and-conquer
sorting, but do it in-place

Quicksort

Pick an element from the array, called
the pivot
Partition the array:

o First come all the elements smaller than the
pivot, then the pivot, then all the elements

greater than the pivot
Recursively quicksort the two partitions

Quicksort

3

9

2

38

/

Say the pivot is 5.

Partition the array into: all elements less
than 5, then 5, then all elements greater

than 5

3

Less than the pivot

Greater than the pivot

Quicksort

Now recursively quicksort the two

partitions!

3 3 2 2 4 5 9 8§
Qulcksortﬂ QllleSOI’tﬂ
2 2 3 4 5 7 8

Pseudocode

// call as sort(a, 0, a.length-1);
void sort(int[] a, int low, int high) {
if (low >= high) return;
int pivot = partition(a, low, high);
// assume that partition returns the
// index where the pivot now 1is
sort(a, low, pivot-1);
sort(a, pivot+1l, high);
J

Common optimisation: switch to insertion sort
when the input array is small

Quicksort's performance

Mergesort is fast because it splits the
array into two equal halves

Quicksort just gives you two halves of
whatever size!

So does it still work fast?

Complexity of quicksort

In the best case, partitioning splits an
array of size n into two halves of size n/2:

n/2 n/2

Complexity of quicksort

The recursive calls will split these arrays
into four arrays of size n/4:

n

1l 1S

n/2 n/2

1S I i i

n/4 n/4 n/4 n/4

il B

n/4

\\>
/ 4
/
/
/

/
/
/
/
/
£

Total time is
O(ll l()g n)!

N\

I

n/4

A

/

n/8

n/8

-

n/ﬂm n/8

H—/

Il/8

O(n) time per level

2

n/8

n/8

logn

(llevels,’

Complexity of quicksort

But that's the best case!

In the worst case, everything is greater
than the pivot (say)

e The recursive call has size n-1

e Which in turn recurses with size n-2, etc.

« Amount of time spent in partitioning:
n+mn1l)+m2)+..+1=0(n2)

Total time is
O(n?)!

O(n) time per level

n
“levels”

Worst cases

When we simply use the first element as
the pivot, we get this worst case for:
o Sorted arrays

» Reverse-sorted arrays

The best pivot to use is the median value
of the array, but in practice it's too
expensive to compute...

Most important decision in QuickSort:
what to use as the pivot

Complexity of quicksort

You don't need to split the array into exactly
equal parts, it's enough to have some balance

o e.g. 10%/90% split still gives O(n log n) runtime

o Median-of-three: pick first, middle and last element
of the array and pick the median of those three -
gives O(n log n) in practice

o Pick pivot at random: gives O(n log n) expected
(probabilistic) complexity

Introsort: detect when we get into the O(n?)
case and switch to a different algorithm (e.g.
heapsort)

Partitioning algorithm

1. Pick a pivot (here 5)

5 3 9 2 8 7 3 2

Partitioning algorithm

2. Set two indexes, low and high

5 3 9 2 8 /7 3 2 1 A4

| | | |

low high

Idea: everything to the left of low is less
than the pivot (coloured yellow),
everything to the right of high is greater

than the pivot (green)

Partitioning algorithm

3. Move low right until you find
something greater than the pivot

5 3 9 2 8 /7 3 2 1 A4

| | | |

low high

Partitioning algorithm

3. Move low right until you find
something greater or equal to the pivot

5 3 9 2 8 /7 3 2 1 A4

| | | |

low high
while (allow] < pivot) lowt+;

3. Move low right until you find
something greater than the pivot

Partitioning algorithm

5 3.9 2 8 7 3 2 4
| | | |
low high

while (allow] < pivot) lowt+;

Partitioning algorithm

3. Move high left until you find
something less than the pivot

5 3.9 2 8 7 3 2 1 4

| | | |

low high
while (alhigh] < pivot) high--;

Partitioning algorithm

4. Swap them!

3 4 2 8 7 3 2

N
_~ ~
~ ~
- ~
— >~

low

swap(allow], alhighl);

Partitioning algorithm

5. Advance low and high and repeat

3 4 2 8 7 3 2 1.

- ~ - ~
- ~ - ~

- ~ - ~

U U

low high
low++; high--;

Partitioning algorithm

5. Advance low and high and repeat

3 4 2 8 7 3 2 1.

= . - ~
P ~ - ~

_ ~ e ~

<‘/ |>\ U

low high
while (allow] < pivot) lowt+;

Partitioning algorithm

5. Advance low and high and repeat

3 4

3 2 1.

N

T/ \T\ T/_T

low high

Partitioning algorithm

5. Advance low and high and repeat

3 4

' Il

//\\

_ —
e ~
/ >~

low

_~ .

_~ .
- .
e >

high

while (alhigh] < pivot) h1gh++

Partitioning algorithm

5. Advance low and high and repeat

3 4

1

-

-
T
il ~
e .
= >

low

swap(allow], alhighl);

_~ .
_~ .
_~ .
= >

high

Partitioning algorithm

5. Advance low and high and repeat

3 4

/

3

-

low++; high--;

. .
_ . e ~.
U // >

low

high

Partitioning algorithm

5. Advance low and high and repeat

3 4

1.3

T 1

low

high

Partitioning algorithm

5. Advance low and high and repeat

3 4

1.3

T 1

low

high

Partitioning algorithm

5. Advance low and high and repeat

3 4 2 1

T 1

low high

Partitioning algorithm

5. Advance low and high and repeat

3 4 2 1 2

Partitioning algorithm

5. Advance low and high and repeat

3 4 2 1 2

Partitioning algorithm

6. When low and high have crossed, we

are finished!

5

3

4

2

But the pivot is in the
wrong place.

Partitioning algorithm

7. Last step: swap pivot with high

3 4 2 1 2

Details

1. What to do if we want to use a
different element (not the first) for the
pivot?

« Swap the pivot with the first element before
starting partitioning!

Details

2. What happens if the array contains
many duplicates?

» Notice that we only advance a[low] as long as
a[low] < pivot

o If a[low] == pivot we stop, same for a|high]

o If the array contains just one element over and
over again, low and high will advance at the
same rate

« Hence we get equal-sized partitions

Pivot

Which pivot should we pick?

o First element: gives O(n2) behaviour for already-
sorted lists

o Median-of-three: pick first, middle and last
element of the array and pick the median of
those three

o Pick pivot at random: gives O(n log n) expected
(probabilistic) complexity

Quicksort

Typically the fastest sorting algorithm...
...but very sensitive to details!

o Must choose a good pivot to avoid O(n?) case

e Must take care with duplicates

« Switch to insertion sort for small arrays to get
better constant factors

If you do all that right, you get an in-

place sorting algorithm, with low

constant factors and O(n log n)

complexity

Mergesort vs quicksort

Quicksort:

e In-place
e O(nlogn) but O(n?) if you are not careful

« Works on arrays only (random access)
Compared to mergesort:

» Not in-place
e O(nlogn)

e Only requires sequential access to the list — this makes it
good in functional programming

Both the best in their fields!

« Quicksort best imperative algorithm

e Mergesort best functional algorithm

Sorting

Why is sorting important? Because sorted data is
much easier to deal with!
e Searching — use binary instead of linear search

e Finding duplicates — takes linear instead of quadratic time
e efc.

Most sorting algorithms are based on
comparisons

e Compare elements - is one bigger than the other? If not,
do something about it!

e Advantage: they can work on all sorts of data

e Disadvantage: specialised algorithms for e.g. sorting lists
of integers can be faster

Complexity of

recursive functions

Calculating complexity

Let T(n) be the time mergesort takes on a
list of size n
Mergesort does O(n) work to split the list in two,

two recursive calls of size n/2 and O(n) work to
merge the two halves together, so...

T(n) = O(n) + 2T(n/2)

Linear amount Plus t
: f time spent in U tWO
T1.me tosorta 2 T P recursive calls
list of size n splitting + of size n/2
merging

Calculating complexity

Procedure for calculating complexity of a
recursive algorithm:
o Write down a recurrence relation
e.g. T(n) = O(n) + 2T(n/2)
» Solve the recurrence relation to get a formula
for T(n) (difficult!)
There isn't a general way of solving any
recurrence relation — we'll just see a few
families of them

Approach 1:
draw a diagram

il B

»

1l

Total

time is

O(nlogn)!

/
/
/
/
/
/
/
/
/
/
/
/

] B AN
| / N

n/8

n/8

n/sﬂ =

—

B

n/4

<:iﬁf/4T(n/ 4)

n/8

n/8

O(n) time per level

@ 88

n/8

n/8

- 8T(n/8)

levels

Another example:
T(n) =0(1) + 2T(n-1)

1

1

1

1

1

1

1

1

~—————

1

1

1

1

amount of work doubles at each level

levels

4T(n 2)
N

8T(n-3)
\\\\‘

M Total time is M
\\\\ \\

<:jf4T(n 2)
‘

- 8T(n-3)

amount of work doubles at each level

levels

This approach

Good for building an intuition
Maybe a bit error-prone

Approach 2: expand out the definition
Example: solving T(n) = O(n) + 2T(n/2)

Expanding out recurrence relations

T(n) =n + 2T(n/2)

Get rid of big-O
- before expanding out
(n instead of O(n)) —

the big O just gets
in the way here

Expanding out recurrence relations

T(n) =n + 2T(n/2)
=n+2n/2 +2T(n/4)) l Expand out T(n/2)
=n+n+4T(n/4)
=n+n+n+8T(n/8)

=n+n+n+..+n+T(1) (logn times)
= O(n log n)
(Note that T(1) is a constant so O(1))

If you prefer it a bit more formally...

T(n) =n+ 2T(n/2)

=2n + 4T(n/4)

=3n + 8T(n/8) =...

General form is kn + 2T (n/2k)

When k = log n, this is nlog n + nT(1)
which is O(n log n)

Divide-and-conquer algorithms

T(n) = O(n) + 2T(n/2): T(n) = O(n log n)
e This is mergesort!
T(n) =2T(n-1): T(n) = O(2»)

o Because 2~ recursive calls of depth n
(exercise: show this)

Other cases: master theorem (Wikipedia)

» Kind of fiddly - best to just look it up if you
need it

Another example: T(n) = O(n) +

T(n) =n + T(n-1)
=n + (n-1) + T(n-2)
=n+ (n-1) + (n-2) + T(n-3)

=n+n-1)+Mm-2)+...+1+T)
=n(n+1) /2 + T(0)
= O(n?)

T(n-1)

Another example: T(n) = O(1) +

T(n)=1+T(n-1)
=2 + T(n-2)

=3 + T(n-3)

=n + T(0)

= O(n)

T(n-1)

Another example: T(n) = O(1) +

Tn) =1+ T(n/2)
=2 + T(n/4)

=3 + T(n/8)

= i;)g n+ T(1)

= O(log n)

T(n/2)

Another example: T(n) = O(n) + T(n/2)

T(n) =n + T(n/2):

T(n) =n + T(n/2)

=n +n/2 + T(n/4)
=n+n/2 +n/4 + T(n/8)
=n+n/2+n/4+ ...

< 2n
= O(n)

Functions that recurse once

T(n) =0(1) + T(n-1): T(n) = O(n)
T(n) =0(n) + T(n-1): T(n) = O(n?)
T(n) = 0(1) + T(n/2): T(n) = O(log n)
T(n) =0(m) + T(n/2): T(n) = O(n)
An almost-rule-of-thumb:

o Solution is maximum recursion depth times
amount of work in one call

(except that this rule of thumb would
give O(n log n) for the last case)

Complexity of recursive functions

Basic idea — recurrence relations

Easy enough to write down, hard to solve

e One technique: expand out the recurrence and see
what happens

e Another rule of thumb: multiply work done per level
with number of levels

e Drawing a diagram might help
Master theorem for divide and conquer
Luckily, in practice you come across the same

few recurrence relations, so you just need to
know how to solve those

