
Breadth-first search

Breadth-first search

A breadth-first search (BFS) in a graph visits
the nodes in the following order:
● First it visits some node (the start node)
● Then all the start node's immediate neighbours
● Then their neighbours
● and so on

So it visits the nodes in order of how far
away they are from the start node

Implementing breadth-first search

We maintain a queue of nodes that we are
going to visit soon
● Initially, the queue contains the start node

We also remember which nodes we've
already added to the queue
Then repeat the following process:
● Remove a node from the queue
● Visit it
● Find all adjacent nodes and add them to the queue,

unless they've previously been added to the queue

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
0

Visit order:

Initially,
queue contains

start node

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:

Visit order:
0

Step 1:
remove node
from queue
and visit it

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
3 1

Visit order:
0

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
1

Visit order:
0 3

Step 1:
remove node
from queue
and visit it

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
1 2

Visit order:
0 3

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

0 is already
visited, so

we don't add
it to the queue

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
2

Visit order:
0 3 1

Step 1:
remove node
from queue
and visit it

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
2 4 6 7

Visit order:
0 3 1

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

2 is already
in the queue, so

we don't add
it again

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
4 6 7

Visit order:
0 3 1 2

Step 1:
remove node
from queue
and visit it

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
4 6 7 9 8

Visit order:
0 3 1 2

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

Skip to the end...

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:

Visit order:
0 3 1 2 4
6 7 9 8 5

We reach step 1, but
the queue is empty,

and we're finished!

Why does using a queue work?

The queue in BFS always contains nodes that are n distance
from the start node, followed by nodes that are n+1 distance
away:

When we remove the node from the head of the queue
(distance n), we add its neighbours (distance n+1) to the end
– so this situation remains true
This means that we explore all nodes of distance n before
getting to distance n+1
● Once we remove the first distance n+1 node, the queue will contain nodes

of distance n+1 and n+2, so we go up in order of distance

... ...

distance n distance n+1

Breadth-first search trees

While doing the BFS, we can
record which node we came
from when visiting each
node in the graph
(we do this when adding
a node to the queue)
We can use this information
to find the shortest path from
the start node to any other node
We can even build the breadth-first search tree, which
shows how the graph was explored and tells you the
shortest path to all nodes

Application: unweighted shortest path

We can represent a maze as a graph – nodes are junctions,
edges are paths. We want to find the simplest way (fewest
choices) to get from entrance to exit

Application: unweighted shortest path

By doing a breadth-first search, and
remembering how we got to each node, we
will find the simplest way out of the maze

Dijkstra's algorithm
Prim's algorithm

Weighted graphs

In a weighted graph, each edge is labelled with
a weight, a number:

The weight typically represents the “cost” of
following the edge

The (weighted) shortest path problem

Find the path with least total weight from point A to
point B in a weighted graph
(If there are no weights:
can be solved with BFS)
Useful in e.g.,
route planning,
network routing
Most common approach:
Dijkstra's algorithm,
which works when all
edges have positive weight

Dijkstra's algorithm

Dijkstra's algorithm computes
the distance from a start
node to all other nodes
It visits the nodes of the
graph in order of distance
from the start node,
and remembers their
distance
We first visit the start node,
which has distance 0

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

At each step we visit the closest
node that we haven't visited yet
This node must be
adjacent to a node we
have visited (why?)
By looking at the
outgoing edges from
the visited nodes, we can
find the closest
unvisited node

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

For each node x we've visited,
and each edge x y, where→
y is unvisited:
● Add the distance to x and

the weight of the edge x → y

Whichever node y has
the shortest total
distance, visit it!
● This is the closest

unvisited node

Repeat until there are no
edges to unvisited nodes

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0
Neighbours of Dunwich
are Blaxhall (distance 15),
Harwich (distance 53)
So visit Blaxhall
(distance 15)
(Red = visited node,
yellow = neighbour of
visited node)

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0
Blaxhall distance 15
Neighbours are:
● Feering (distance

15 + 46 = 61)
● Harwich (distance 53 –

also via Blaxhall
15 + 40 = 55)

So visit Harwich (distance 53)

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0
Blaxhall distance 15
Harwich distance 53
Neighbours are:
● Feering (distance

15 + 46 = 61)
● Tiptree (distance

53 + 31 = 84)
● Clacton (distance

53 + 17 = 70)

So visit Feering (distance 61)

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0
Blaxhall distance 15
Harwich distance 53
Feering distance 61
Neighbours are:
● Tiptree (distance

61 + 3 = 64,
also via Harwich 55 + 29 = 84)

● Clacton (distance 53 + 17 = 70)
● Malden (distance 61 + 11 = 72)

So visit Tiptree (distance 64)

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0
Blaxhall distance 15
Harwich distance 53
Feering distance 61
Tiptree distance 64
Neighbours are:
● Clacton (distance 53 + 17 = 70,

also via Tiptree 64 + 29 = 93)
● Maldon (distance 61 + 11 = 72,

also via Tiptree 64 + 8 = 72)

So visit Clacton (distance 70)

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0
Blaxhall distance 15
Harwich distance 53
Feering distance 61
Tiptree distance 64
Clacton distance 70
Neighbours are:
● Maldon (distance 61 + 11 = 72,

also via Tiptree 64 + 8 = 72,
also via Clacton 70 + 40 = 110)

So visit Maldon (distance 72)

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0
Blaxhall distance 15
Harwich distance 53
Feering distance 61
Tiptree distance 64
Clacton distance 70
Maldon distance 72
Finished!

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

To arrive at Maldon, we
must take the edge from

Feering, Tiptree or Clacton

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Clacton: → 70
Clacton Maldon edge: → 40

So coming via this edge: 110
Dunwich Maldon: → 72
This route won't work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Tiptree: → 64
Tiptree Maldon edge: → 8

So coming via this edge: 72
Dunwich Maldon: → 72

This route will work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Now we know we can come
via Tiptree – so just repeat

the process to work out
how to get to Tiptree!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Harwich: → 53
Harwich Tiptree edge: → 31

So coming via this edge: 84
Dunwich Tiptree: → 64
This route won't work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Feering: → 61
Feering Tiptree edge: → 3

So coming via this edge: 64
Dunwich Tiptree: → 64

This route will work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Repeat the process
for Feering

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Blaxhall: → 15
Blaxhall Feering edge: → 46

So coming via this edge: 61
Dunwich Feering: → 61

This route will work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Repeat the process
for Blaxhall

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Harwich: → 53
Harwich Blaxhall edge: → 40

So coming via this edge: 93
Dunwich Blaxhall: → 15
This route won't work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Dunwich: → 0
Dunwich Blaxhall edge: → 15

So coming via this edge: 15
Dunwich Blaxhall: → 15

This route will work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Now we have found our
way back to the start node
and have the shortest path!

Dijkstra's algorithm

Formally, we maintain a set S, which contains all visited
nodes and their distances (really a map)
Let S = {start node 0}→
While not all nodes are in S,
● For each node x in S, and each neighbour y of x, calculate

d = distance to x + cost of edge from x to y
● Find the node y which has the smallest value for d
● Add that y and its distance d to S

This computes the shortest distance to each node, from
which we can reconstruct the shortest path to any node
What is the efficiency of this algorithm?

Dijkstra's algorithm

Formally, we maintain a set S, which contains all visited
nodes and their distances (really a map)
Let S = {start node 0}→
While not all nodes are in S,
● For each node x in S, and each neighbour y of x, calculate

d = distance to x + cost of edge from x to y
● Find the node y which has the smallest value for d
● Add that y and its distance d to S

This computes the shortest distance to each node, from
which we can reconstruct the shortest path to any node
What is the efficiency of this algorithm?

We add one node
to S each time

through the loop –
loop runs |V| times

Each time through the
outer loop, we loop

through all edges in S,
which by the end

contains |E| edges

Total:
O(|V| × |E|)!

Dijkstra's algorithm, made efficient

The algorithm so far is O(|V| × |E|)
This is because this step:
● For all nodes adjacent to a node in S, calculate their

distance from the start node, and pick the closest one

takes O(|E|) time, and we execute it once for
every node in the graph
How can we make this faster?

Dijkstra's algorithm, made efficient

Answer: use a priority queue!
To find the closest unvisited node, we store all
neighbours of unvisited nodes in a priority
queue, together with their distances
Instead of searching for the nearest unvisited
node, we can just ask the priority queue for
the node with the smallest distance
Whenever we visit a node, we will add each of
its unvisited neighbours to the priority queue

Dijkstra's algorithm

S = {}
Q = {Dunwich 0},
Remove the smallest
element of Q,
“Dunwich 0”.
Add Dunwich 0→
to S, and add Dunwich's
neighbours to Q.

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0}→
Q = {Blaxhall 15,
 Harwich 53}
Remove the smallest
element of Q,
“Blaxhall 15”.
Add Blaxhall 15→
to S, and add Blaxhall's
neighbours to Q.

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15}→
Q = {Harwich 53,
 Feering 61,
 Harwich 55}
Remove the smallest
element of Q,
“Harwich 53”.
Add Harwich 53 to S,→
and add Harwich's
neighbours to Q.

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15,→
 Harwich 53}→
Q = {Feering 61,
 Harwich 55,
 Tiptree 84,
 Clacton 70}
Remove the smallest
element of Q,
“Harwich 55”.
Oh! Harwich is already in S.
So just ignore it.

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15,→
 Harwich 53}→
Q = {Feering 61,
 Tiptree 84,
 Clacton 70}
Remove the smallest
element of Q,
“Feering 61”.
Add Feering 61 to S,→
and add Feering's
neighbours to Q.

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15,→
 Harwich 53,→
 Feering 61}→
Q = {Tiptree 84,
 Tiptree 64,
 Maldon 72,
 Clacton 70}

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm, efficiently

Let S = {} and Q = {start node 0}→
While Q is not empty:
● Remove the node x from Q that has the smallest

priority (distance), call its distance d
● If x is in S, do nothing
● Otherwise, add x → d to S and for each outgoing edge

x y→ , add y to Q with priority d + weight of edge to y

Dijkstra's algorithm, efficiently

Let S = {} and Q = {start node 0}→
While Q is not empty:
● Remove the node x from Q that has the smallest

priority (distance), call its distance d
● If x is in S, do nothing
● Otherwise, add x → d to S and for each outgoing edge

x y→ , add y to Q with priority d + weight of edge to y

Maximum size of Q is |E|,
total of O(|V| + |E|)

priority queue operations,
so total time:

O((|V| + |E|) log |E|)
or

O(n log n) where n = |V| + |E|

Minimum spanning trees

A spanning tree of a graph
is a subgraph (a graph
obtained by deleting
some of the edges) which:
● is acyclic
● is connected

A minimum spanning
tree is one where the
total weight of the edges
is as low as possible

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

40

3
17

29
8

Blaxhall

Minimum spanning trees

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

40

3
17

29
8

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Prim's algorithm

We will build a minimum spanning tree by
starting with no edges and adding edges until
the graph is connected
Keep a set S of all the nodes that are in the tree
so far, initially containing one arbitrary node
While there is a node not in S:
● Pick the lowest-weight edge between a node in S and a

node not in S
● Add that edge to the spanning tree, and add the node to

S

Minimum spanning treesS = {Feering}
Lowest-weight edge

from S to not-S
is Feering Tiptree→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

Blaxhall

Minimum spanning treesS = {Feering, Tiptree}
Lowest-weight edge

from S to not-S
is Tiptree Maldon→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering
3

Blaxhall

Minimum spanning trees
S = {Feering, Tiptree,

Maldon}
Lowest-weight edge

from S to not-S
is Tiptree Clacton→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering
3

8

Blaxhall

Minimum spanning trees
S = {Feering, Tiptree,

Maldon, Clacton}
Lowest-weight edge

from S to not-S
is Clacton Harwich→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering
3

29
8

Blaxhall

Minimum spanning trees
S = {Feering, Tiptree,

Maldon, Clacton,
Harwich}

Lowest-weight edge
from S to not-S

is Harwich Blaxhall→
Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering
3

17
29

8

Blaxhall

Minimum spanning trees
S = {Feering, Tiptree,

Maldon, Clacton,
Harwich, Blaxhall}

Lowest-weight edge
from S to not-S

is Blaxhall Dunwich→
Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

40

3
17

29
8

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

40

3
17

29
8

Blaxhall

Minimum spanning trees
Notice:

we get a minimum
spanning tree

whatever node we start at!
For this graph,

because there is only one
minimum spanning tree,
we always get that one.

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Prim's algorithm, efficiently

The operation
● Pick the lowest-weight edge between a node in S and a node not in S

takes O(n) time if we're not careful! Then Prim's
algorithm will be O(n2)
To implement Prim's algorithm, use a priority queue
containing all edges between S and not-S
● Whenever you add a node to S, add all of its edges to nodes in not-S

to a priority queue
● To find the lowest-weight edge, just find the minimum element of the

priority queue
● Just like in Dijkstra's algorithm, the priority queue might return an

edge between two elements that are now in S: ignore it

New time: O(n log n) :)

Summary

Breadth-first search – finding shortest paths in unweighted graphs,
using a queue
Dijkstra's algorithm – finding shortest paths in weighted graphs –
some extensions for those interested:
● Bellman-Ford: works when weights are negative
● A* – faster – tries to move towards the target node, where Dijkstra's algorithm

explores equally in all directions

Prim's algorithm – finding minimum spanning trees
Both are greedy algorithms – they repeatedly find the “best” next
element
● Common style of algorithm design

Both use a priority queue to get O(n log n)
● Dijkstra's algorithm is sort of BFS but using a priority queue instead of a queue

Many many many more graph algorithms

A* search
(not on exam)

A problem with Dijkstra's algorithm

We can use Dijkstra's algorithm to find the
shortest route from A to B
But it explores all nodes in the graph that are
closer than B!
A person planning a route would try to move
towards B

Gothenburg to Stockholm?

The A* algorithm

Often we have a notion of distance in a graph
● e.g., Gothenburg to Stockholm is 400km as the crow

flies
● No possible route can be shorter than this!

A* uses distance to guide the search
● Try to pick edges that reduce the distance to the

target, avoid edges that increase the distance
● But still guaranteeing to find the shortest path!

The A* algorithm

We assume there is a function h(x) (the heuristic)
● In our example, h(x) is the distance from x to Stockholm as the

crow flies

When we take an edge x y, we are interested not only →
in the weight but also h(y)-h(x)
● If h(y)-h(x) is positive, we moved away from the target (bad);

if it's negative, we moved towards the target (good)

To exploit h(y)-h(x), we take the input graph, and
modify the weights of all the edges
● If we have an edge from x to y, we increase its weight by

h(y)-h(x) – so “good” edges get cheaper and “bad” edges get more
expensive

Then we run Dijkstra's algorithm on this new graph!

A* – an example

A* was originally invented for robot motion
planning! Here is a floor with an obstacle in.
(Edges given directions for simplicity.)
The robot wants to get
from the blue node to
the black node.
The shortest path has
weight 9 – Dijkstra's
algorithm will explore
the whole graph!

1 1 1 1 1

1

1

1

1

1 1

1

1

1 1

1

1

1 1 1
1

1

1

1

111

1

1

1 1

1

1 1

1

1 1

1

1

1 1

A* – an example

Now let's use the heuristic h(x) = x distance
to black node + y distance to black node
e.g., h(blue node) = 5
If there is an edge from
x to y, we add h(y)-h(x),
so for this graph:
● If the edge goes up or right,

we decrease its weight by 1
● If it goes down of left,

we increase its weight by 1

1 1 1 1 1

1

1

1

1

1 1

1

1

1 1

1

1

1 1 1
1

1

1

1

111

1

1

1

1 1

1

1 1

1

1 1

1

1

1

A* – an example

In the new graph, the up and right edges
have weight 0, and the left and down edges
have weight 2
The shortest path has
weight 4 – you have to
go left twice
The area the algorithm
explores is highlighted
in red

0 0 0 0 0

2

2

2

2

2 2

2

2

2 2

2

2

2 0 0
0

0

0

0

000

0

0

2

2 2

2

0 0

2

2 2

2

0

0

A* – why does it work?

In A*, we change the weights of all the edges – are we still
going to get the shortest path for the original graph? Yes!
Suppose we have a path e.g. a b c, and weights w→ → ab,
wbc – the total weight of the path is wab + wbc

Using A*, the weights are wab + h(b) - h(a) and wbc + h(c) -
h(b)
The new weight of the path a b c is:→ →
wab + h(b) - h(a) + wbc + h(c) - h(b) = wab + wbc + h(c) - h(a)
So the total weight of each path from source to target is
increased by h(target) - h(source) – a constant
The weight of each path changes, but by the same amount
– so the shortest path is still the shortest path!

Some technicalities

Dijkstra's algorithm doesn't work if there is an
edge with a negative weight
So we'd better be sure that modifying the
weights never makes them negative
If we have an edge from x to y of weight w, the
new weight is w+h(y)-h(x), so this is fine as long
as:
● h(x) ≤ w + h(y)

That is, by following an edge you can't reduce the
distance to the target by more than the weight of
that edge – this is true e.g. of distance in maps

A* – summary

An extension of Dijkstra's algorithm that uses
distance information to move towards the
destination instead of exploring in all directions
● Still guaranteed to find the shortest path

Works very well in practice!
If we multiply the heuristic function by a constant,
we can direct the search less or more aggressively
● But if we're too aggressive and the heuristic function returns

too large values, the edge weights will become negative
● In this case we can't use Dijkstra's algorithm, but there is a

more complex version of A* we can use instead
● But this aggressive version of A* can find suboptimal paths

