
Graphs



Graphs

A graph is a data structure consisting of 
nodes (or vertices) and edges
● An edge is a connection between two nodes

Nodes: A, B, C, D, E
Edges: (A, B), (A, D), (D, E), (E, C)
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Nodes are stations
Edges are “bits of line”

Algorithm:
What is the quickest way
from point A to point B?



Nodes are components
Edges are connections

Algorithm:
How much current

flows through each wire
(as a function of time)?



Graphs

Graphs are used all over the place:
● communications networks
● many of the algorithms behind the internet
● maps, transport networks, route finding
● etc.

Anywhere where you have connections or 
relationships!
Normally the vertices and labels are 
labelled with relevant information!



Graphs

We only care what nodes and edges the 
graph has, not how it's drawn – these two 
are the same graph

V = {0, 1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 2), (0, 5), (0, 6), (3, 5), (3, 4), (4, 5), (4, 6)}



Graphs

Graphs can be directed or undirected
● In an undirected graph, an edge connects two 

nodes symmetrically (we draw a line between the 
two nodes)

● In a directed graph, the edge goes from the source 
node to the target node (we draw an arrow from 
the source to the target)

A tree is a special case of a directed graph
● Edge from parent to child



Paths

A path is a sequence of edges that take 
you from one node to another

If there is a path from node A to node B, 
we say that B is reachable from A



Cyclic graphs

A graph is cyclic if there is a path from a 
node to itself; we call the path a cycle.
Otherwise the graph is acyclic.

This path is a cycle
and the graph

is cyclic



Cyclic graphs

A path is only a cycle if:
● it starts and ends at the same node

(otherwise it's definitely not a cycle!)
● it's non-empty

(otherwise all graphs would be cyclic)
● it is a simple path: it doesn't pass through the 

same node or edge twice, except for the first and 
last node
(otherwise the following graph would be cyclic, 
by going from 4 to 5 and back again:
                                      )4 5



How to implement a graph

Typically: adjacency list
● List of all nodes in the graph, and with each node 

store all the edges having that node as source



Adjacency list – undirected graph

Each edge appears twice, once for the 
source and once for the target node



Graph algorithms:
depth-first search,

reachability,
connected components



Reachability

How can we tell what nodes are reachable 
from a given node?
We can start exploring the graph from 
that node, but we have to be careful not 
to (e.g.) get caught in cycles
Depth-first search is one way to explore 
the part of the graph reachable from a 
given node



Depth-first search

Depth-first search is a traversal algorithm
● This means it takes a node as input, and enumerates all 

nodes reachable from that node

It comes in two variants, preorder and postorder 
– we'll start with preorder
To do a preorder DFS starting from a node:
● visit the node
● for each outgoing edge from the node,

recursively DFS the target of that edge,
unless it has already been visited

It's called preorder because we visit each node 
before its outgoing edges



Example of a depth-first search

Visit order: 1
DFS node 1
(By the way, is 5
reachable from 1?)

1 2

3 4

5

6 7

= unvisited = visited= current



Example of a depth-first search

Visit order: 1 3
Follow edge 1  3,→
recursively DFS node 3

1 2

3 4

5

6 7

= unvisited = visited= current



Example of a depth-first search

Visit order: 1 3 6
Follow edge 3  6,→
recursively DFS node 6

1 2

3 4

5

6 7

= unvisited = visited= current



Example of a depth-first search

Visit order: 1 3 6
Recursion backtracks to 3

1 2

3 4

5

6 7

= unvisited = visited= current



Example of a depth-first search

Visit order: 1 3 6 4
Follow edge 3  4,→
recursively DFS node 4

1 2

3 4

5

6 7

= unvisited = visited= current



Example of a depth-first search

Visit order: 1 3 6 4 2
Follow edge 4  2,→
recursively DFS node 2
We don't follow 4  6→
or 2  3, as those nodes→
have already been visited
Eventually the recursion
backtracks to 1 and we stop

1 2

3 4

5

6 7

= unvisited = visited= current



Reachability revisited

How can we tell what nodes are reachable 
from a given node?
Answer:
Perform a depth-first search starting 
from node A, and the nodes visited by the 
DFS are exactly the reachable nodes



Connectedness

An undirected graph is called connected if 
there is a path from every node to every 
other node

How can we tell if a graph is connected?

4

8

5

9

6 7

This graph is
connected



Connectedness

An undirected graph is called connected if 
there is a path from every node to every 
other node

How can we tell if a graph is connected?

4

8

5

9

6 7

This graph is
not connected



Connectedness

If an undirected graph is unconnected, it 
still consists of connected components

4

8

5

9

6 7

{4, 5} is a
connected

component

{6, 7, 8, 9} is a
connected

component



Connectedness

A single unconnected node is a connected 
component in itself

4

8 9

6 7

{4} is a
connected

component



Connected components

How can we find:
● the connected component containing a

given node?
● all connected components in the graph?



Connected components

To find the connected component 
containing a given node:
● Perform a DFS starting from that node
● The set of visited nodes is the connected component

To find all connected components:
● Pick a node that doesn't have a connected 

component yet
● Use the algorithm above to find its connected 

component
● Repeat until all nodes are in a connected component



Strongly-connected components

In a directed graph, there are two notions 
of connectedness:
● strongly connected means there is a path from 

every node to every other node
● weakly connected means the graph is connected if 

you ignore the direction of the edges
(the equivalent undirected graph is connected)

1 2

3 4

5

6 7

This graph is
weakly connected,
but not strongly

connected (why?)



Strongly-connected components

You can always divide a directed graph into its 
strongly-connected components (SCCs):

In each strongly-connected component, every 
node is reachable from every other node
● The relation “nodes A and B are both reachable from each 

other” is an equivalence relation on nodes
● The SCCs are the equivalence classes of this relation

1 2

3 4

5

6 7



Strongly-connected components

To find the SCC of a node A, we take the 
intersection of:
● the set of nodes reachable from A
● the set of nodes which A can be reached from

(the set of nodes “backwards-reachable” from A)

This gives us all the nodes B such that:
● there is a path from A to B, and
● there is a path from B to A

To find the set of nodes backwards-
reachable from A, we will use the idea of the 
transpose of a graph



Transpose of a graph

To find the transpose of a directed graph, 
flip the direction of all the graph's edges:

Note that: there is a path from A to B in 
the original graph iff there is a path from
B to A in the transpose graph!

1 2

3 4

5

6 7

1 2

3 4

5

6 7
Graph Transpose



Strongly-connected components

To find the SCC of a node (such as 2), 
perform a DFS in the graph and the 
transpose graph:

The nodes visited in both DFSs are the SCC 
– in this case {1, 2, 3, 4}

1 2

3 4

5

6 7

1 2

3 4

5

6 7
Graph Transpose



Strongly-connected components

To find the SCC of a node A:
● Find the set of nodes reachable from A, using 

DFS
● Find the set of nodes which have a path to A,

by doing a DFS in the transpose graph
● Take the intersection of these two sets

Implementation in practice:
● When doing the DFS in the transpose graph, we 

restrict the search to the nodes that were 
reachable from A in the original graph



What do SCCs mean?

The SCCs in a graph tell you about the 
cycles in that graph!
● If a graph has a cycle, all the nodes in the cycle 

will be in the same SCC
● If an SCC contains two nodes A and B, there is a 

path from A to B and back again, so there is a 
cycle

A directed graph is acyclic iff:
● All the SCCs have size 1, and
● no node has an edge to itself (SCCs do not take 

any notice of self-loops)



Cycles and SCCs

Here is the directed graph from before.
Notice that:
● The big SCC is where all the cycles are
● The acyclic “parts” of the graph have SCCs of size 1

The SCCs characterise the cycles in the graph!

1 2

3 4

5

6 7



Graph algorithms:
postorder DFS,

detecting cycles,
topological sorting



Topological sorting

Here is a directed acyclic graph (DAG) with 
courses and prerequisites:
We might want
to find out: what
is a possible order
to take these
courses in?
This is what
topological sorting gives us.
Note that the graph must be acyclic!



Example: topological sort

A topological sort of the nodes in a DAG is a 
list of all the nodes, so that if there is a path 
from u to v, then u comes before v in the list
Every DAG has a
topological sort,
often several
012345678 is a
topological sort of
this DAG, but
015342678 isn't.



Postorder depth-first search

To implement topological sorting we'll need 
a variant of DFS called postorder depth-first 
search
To do a postorder DFS starting from a node:
● mark the node as reached
● for each outgoing edge from the node,

recursively DFS the target of that edge,
unless it has already been reached

● visit the node

In postorder DFS, we visit each node after 
we visit its outgoing edges!



Postorder depth-first search

Visit order: 
DFS node 1 (don't visit it yet, but 
remember that we
have reached it) 1 2

3 4

5

6 7

= unvisited = visited= current



Postorder depth-first search

Visit order:
Follow edge 1  3,→
recursively DFS node 3

1 2

3 4

5

6 7

= unvisited = visited= current



Postorder depth-first search

Visit order: 6
Follow edge 3  6,→
recursively DFS node 6
The recursion bottoms
out, visit 6!

1 2

3 4

5

6 7

= unvisited = visited= current



Postorder depth-first search

Visit order: 6
Recursion backtracks to 3

1 2

3 4

5

6 7

= unvisited = visited= current



Postorder depth-first search

Visit order: 6
Follow edge 3  4,→
recursively DFS node 4

1 2

3 4

5

6 7

= unvisited = visited= current



Postorder depth-first search

Visit order: 6 2
Follow edge 4  2,→
recursively DFS node 2
The recursion bottoms
out again and we visit 2

1 2

3 4

5

6 7

= unvisited = visited= current



Postorder depth-first search

Visit order: 6 2 4
The recursion backtracks and
now we visit 4

1 2

3 4

5

6 7

= unvisited = visited= current



Postorder depth-first search

Visit order: 6 2 4 3
The recursion backtracks and
now we visit 3

1 2

3 4

5

6 7

= unvisited = visited= current



Postorder depth-first search

Visit order: 6 2 4 3 1
The recursion backtracks and
now we visit 1

1 2

3 4

5

6 7

= unvisited = visited= current



Why postorder DFS?

In postorder DFS:
● We only visit a node after we recursively DFS its 

successors (the nodes it has an edge to)

If we look at the order the nodes are 
visited (rather than the calls to DFS):
● If the graph is acyclic, we visit a node only after 

we have visited all its successors

If we look at the list of nodes in the order 
they are visited, each node comes after all 
its successors (look at the previous slide)



Topological sorting

Visit order: 6 2 4 3 1
In topological sorting, we want each node to come 
before its successors...
With postorder DFS,
each node is visited
after its successors!
Idea: to topologically sort,
do a postorder DFS,
look at the order the nodes
are visited in and reverse it
Small problem: not all nodes are visited!
Solution: pick a node we haven't visited and DFS it

1 2

3 4

5

6 7



Topological sorting

To topologically sort a DAG:
● Pick a node that we haven't visited yet
● Do a postorder DFS on it
● Repeat until all nodes have been visited

Then take the list of nodes in the order 
they were visited, and reverse it
If the graph is acyclic, the list is 
topologically sorted:
● If there is a path from node A to B, then A comes 

before B in the list



Preorder vs postorder

You might think that in preorder DFS, we 
visit each node before we visit its 
successsors
But this is not the case,
in this example from
earlier we visited 6 before
its predecessor 4, because we
happened to go through 3
Preorder DFS visits the nodes in “any old 
order” – postorder is more well-behaved

1 2

3 4

5

6 7



Detecting cycles in graphs

We can only topologically sort acyclic 
graphs – how can we detect if a graph is 
cyclic?
Easiest answer: topologically sort the 
graph and check if the result is actually 
topologically sorted
● Does any node in the result list have an edge to a 

node earlier in the list? If so, the topological 
sorting failed, and the graph must be cyclic

● Otherwise, the graph is acyclic



Kosaraju's algorithm (not on exam)

Kosaraju's algorithm finds all the SCCs in a 
directed graph in linear time
Recall our algorithm to find the SCC of a node A:
● Do a DFS starting from node A
● Do a DFS starting from node A in the transpose graph
● Take the intersection of the two visited sets

In Kosaraju's algorithm, we first do a DFS 
starting from node A, giving a set S of visited 
nodes
Then we find the SCCs of all nodes in S, by doing 
several DFSes in the transpose graph!



Kosaraju's algorithm (not on exam)

Start with a node A, do a topological sort 
starting from A
Now take the visited nodes in topological 
order, and for each node:
● If we have already assigned the node an SCC, skip it
● Otherwise, do a DFS starting from that node in the 

transpose graph
● The SCC of that node is the intersection of the two 

visited sets

Read up on it if you're interested!
● http://scienceblogs.com/goodmath/2007/10/30/comput

ing-strongly-connected-c/
 



An alternative:
depth-first forests

(not on exam)



Depth-first forests

Instead of producing a list of nodes, DFS can 
return a tree that shows how the nodes 
were explored (the recursion structure):

1 2

3 4

5

6 7

1

3

6 4

2



Depth-first forests

Repeating until all nodes have been 
visited, we get a forest (set of trees):

1 2

3 4

5

6 7

1

3

6 4

2

5

7

http://scienceblogs.com/goodmath/2007/10/30/computing-strongly-connected-c/
http://scienceblogs.com/goodmath/2007/10/30/computing-strongly-connected-c/


Depth-first forests

A graph is cyclic iff the graph has an edge 
from a node in the tree to its ancestor:

1 2

3 4

5

6 7

1

3

6 4

2

5

7

Edge from
4 to 1 – cyclic 



Depth-first forests

You can also topologically sort a graph by 
flattening the forest into a list!

1 2

3 4

5

6 7

1

3

6 4

2

5

7

5,7,
1,3,6,4,2



Depth-first forests

The idea: make DFS return a forest of nodes, 
instead of a list
● Pre/post-order? Those are just different ways to flatten the 

forest

Many algorithms based on DFS come out pretty 
elegant that way
● Especially in a functional setting, where trees are very easy to 

deal with
● You can view the graph as a forest, plus some extra edges that 

go upwards, downwards or sideways in the tree

If you're interested, you can read the paper
“Graph algorithms with a functional flavour”

which is on the course webpage



Summary

Graphs are extremely useful!
● Common representation: adjacency lists (or just implicitly as 

references between the objects in your program)

Several important graph algorithms:
● Reachability – can I get from node A to B?
● Does the graph have a cycle?
● Strongly-connected components – where are the cycles in the graph?
● Topological sorting – how can I order the nodes in an acyclic graph?

All based on depth-first search!
● Enumerate the nodes reachable from a starting node
● Preorder: visit each node before its successors
● Postorder: visit each node after its successors, gives nicer order
● Common pattern in these algorithms: repeat DFS from different 

nodes until all nodes have been visited


