

Graphs

A graph is a data structure consisting of
nodes (or vertices) and edges

e An edge is a connection between two nodes

A » B
D ——» E —» C

Nodes: A, B, C, D, E
Edges: (A, B), (A, D), (D, E), (E, C)

Nodes are stations ——

= — HifAUMHMER
- EMFIELD WEST 1333 |

Edges are “bits of line” -

b= ARMEE GROVE

o
% Tl b BOUKOS GRIEN
BULHT DAK ﬂ'nA.'runn}

COLIHDALE b WOO0 GREER
° HEGLATY
I I I ° LIS ML HENER LN s TURKPIEE LkKE
Orl ° o BEENT o
WILLLSDEM GREEN SoLogNS LEMELL b MANCH HOUSE
1 - EiLEURN & BRONDELELIY HAM PITLAD
at 1S € JulckKeSt wa s e
WEST HAMPITEAD §iusizi W Torwm %,
= i SEMAL it DHLAYTON PARK
FINCHLEY ROAD fhaix iy 1 L)

from POil’lt A to Point B? o Nomseoma ™ Wosen og o aineren

LM PR

A McipinGion L < 1AM
Amam WALE caNMEIOn [G CANCHBURY & I¥SLE ROAD

KitGS CROSS
EUSTOR ST PARLCE AL

A WA ICE AVENUE
& D oD STREET
: ARGEL

HEDDH &L DR
oy COIRGATE

é o mil I Tl
"
TR EALING~, COWENT sy ice = :"D_D'“ .
SO T FTE LS mlﬁ%’:}pﬂ' el M M :I:!I.ﬂ r"‘_-:_ [} . _,A
W
OS5 [t] ACTOM TOWHN ABDIEON —— DOVER STRELET Hﬂ:: A";'f b
OSTERLEY SOHITH ACTOM — LoAn \RISINGToN e muAx ComER A EWELL
WL ML EAST MG ARG 3 1
L HAMMERSMITH SLOUCHSTER gaiaren
HORELDN CENTRAL ATAMFOAD

WA PR -
OO

HOLELOW WELT

TEMP -
e S
o) LONDON RRIDGE
— WATERLOO

LAMEETH

MGRTH BOROU = = 1
L] ELEPHAMT m'.n-rl.r--mi-l

K CRETLE
SURREY :UCIEJ

]
o I UETETS =

| s IIIIH‘-IIH&!I:OH “"”"
BACHFTON

WA LHAR GRIEN

P
= FAE LTS {{E(’

AL
e WEW CROSE MWEW
-_L,,ﬁfff:.-l STOCKWELL GATE CROSS

_.,-r:-fy CLAPHAM NOKTH

= CLAPHAM COMMEH

; REFEREMCE b e BT HEY e
BISTRICT RAILWRY = p [TROPOLITAN ALY — o THA

BAKIRLOG LINE wem METACPOLIANALE o ke SOUTHIIELDS ALHAM

FRECADILLY LIME - e FALAT RONTH RN RoITE x S AR
!g::-m HEGHEATE EAST LONWDON N LWKY == e e TRIMNITY {rooT ¥
B MORDEM LINE | INTERCHAMGE STATICHE &> FIMALLDON TOOTING BACADWAY

CEMTRAL LONDOH RLE . WNDER SONSTRALC TN i (E""‘"‘"‘ i cOLLIENS

SOUTH WM BLEDOMN (M LATCH)
HOREEN
ML HECK

Nodes are components

. Edges are connections
vy Algorithm:

How much current

1.590V R 01 flows through each wire
(Verat) (as a function of time)?
. 10E

Vs 0.8R,
CURVATURE

COMPENSATOR nR1 + -
CIRCUIT

Graphs

Graphs are used all over the place:

e communications networks
» many of the algorithms behind the internet
e maps, transport networks, route finding

o etc.

Anywhere where you have connections or
relationships!

Normally the vertices and labels are
labelled with relevant information!

Graphs

We only care what nodes and edges the
graph has, not how it's drawn — these two
are the same graph

(0) (6)
e

Vv=1{0,1,2,3,4,5, 6}
E=1{(0, 1), (0,2),(0,5), (0, 6), (3,5), (3,4), (4, 5), (4, 6);

®

©

Graphs

Graphs can be directed or undirected

o In an undirected graph, an edge connects two
nodes symmetrically (we draw a line between the
two nodes)

e In a directed graph, the edge goes from the source
node to the target node (we draw an arrow from
the source to the target)

A tree is a special case of a directed graph
» Edge from parent to child

Paths

A path is a sequence of edges that take
you from one node to another

Ann Arbor

120 Cleveland 130 Pittsburgh

Chicago ¢
®

180 Philadelphia

Indianapolis Columbus

[f there is a path from node A to node B,
we say that B is reachable from A

Cyclic graphs

A graph is cyclic if there is a path from a
node to itself; we call the path a cycle.
Otherwise the graph is acyclic.

Ann Arbor
® O Detroit
40 0 = 120 CIev;Iand 130 Pittsburgh
260 ' B ®
Toledo
20
Chicago @ . {=0
®
180 | Philadelphia
‘This path is a cycle
and the graph
180 5 .
® is cyclic

Indianapolis Columbus

Cyclic graphs

A path is only a cycle if:

o it starts and ends at the same node
(otherwise it's definitely not a cycle!)

e it's non-empty
(otherwise all graphs would be cyclic)
e it is a simple path: it doesn't pass through the

same node or edge twice, except for the first and

last node
(otherwise the following graph would be cyclic,
by going from 4 to 5 and back again:

4) 5))

How to implement a graph

Typically: adjacency list

o List of all nodes in the graph, and with each node
store all the edges having that node as source

ext = next

n = nu
value = 1 value = 3

[e]
[1]
[2]
[3]
[4]
[5]

[N

/BRI

= = = <

= B3 o =]

— =R = m

= E ¥ = E X

m i ey
(] 0 0 mon ¥ non
= a3 B3 -

| ™ c

== =

al a—d

value = 3

Adjacency list — undirected graph

Each edge appears twice, once for the
source and once for the target node

Node S— Node
next = [_—— next = pnull
value 1 value = 4
H-‘)dﬂ I_:I Node ode ode
next = E—E next = E—S next = E——E nnnnnnn
[@] __._r—-*"'"/ value = @ val 4 val - 2 1 3
_.-r"""“
[1] et}
[2)}] —— . Node -
[l — &
[4] —_— — nex null
1 1 val 3
] I | el 0 Node
= E—-—S‘ next E——E next 11
1 1 value 4 value 2
nd e N e S» N
= E——-E nex [—3 next 11
1 3 val & value 1

Graph algorithms:
depth-first search,

reachability,
connected components

Reachability

How can we tell what nodes are reachable
from a given node?

We can start exploring the graph from
that node, but we have to be careful not
to (e.g.) get caught in cycles

Depth-first search is one way to explore
the part of the graph reachable from a
given node

Depth-first search

Depth-first search is a traversal algorithm

« This means it takes a node as input, and enumerates all
nodes reachable from that node

[t comes in two variants, preorder and postorder
— we'll start with preorder

To do a preorder DES starting from a node:

e visit the node

« for each outgoing edge from the node,
recursively DFS the target of that edge,
unless it has already been visited
It's called preorder because we visit each node

before its outgoing edges

Example of a depth-first search

Visit order: 1
DES node 1

(By the way, is 5
reachable from 17?)

O = current = =unvisited . =visited

Example of a depth-first search

Visit order: 1 3

Follow edge 1 — 3,
recursively DESnode 3

O = current '~ =unvisited . =visited

Example of a depth-first search

Visit order: 1 3 6

Follow edge 3 — 6,
recursively DFS node 6

1 +2<« 5

N,

3 =4

\@ﬁé

O = current '~ =unvisited . =visited

Example of a depth-first search

Visit order: 1 3 6

Recursion backtracks to 3

O = current '~ =unvisited . =visited

Example of a depth-first search

Visit order: 1364

Follow edge 3 — 4,
recursively DESnode 4

1-24s

O = current '~ =unvisited . =visited

Example of a depth-first search

Visit order: 1364 2

Follow edge 4 — 2,
recursively DES node 2

We don't follow 4 — 6 ; % ‘
or 2 = 3, as those nodes \ /

have already been visited @ 3 —» 4

Eventually the recursion I
backtracks to 1 and we stop 6 , 7

O = current = unvisited - =visited

Reachability revisited

How can we tell what nodes are reachable
from a given node?

Answer:

Perform a depth-first search starting
from node A, and the nodes visited by the
DES are exactly the reachable nodes

Connectedness

An undirected graph is called connected if
there is a path from every node to every
other node

This graph is
connected

How can we tell if a graph is connected?

Connectedness

An undirected graph is called connected if
there is a path from every node to every
other node

@ O
This graph is

not connected

How can we tell if a graph is connected?

Connectedness

[f an undirected graph is unconnected, it
still consists of connected components

e 5)

{4,5}isa - {6,7,8,9}isa
connected connected
component component

Connectedness

A single unconnected node is a connected
component in itself

{4} is a 7 @

connected
component

Connected components

How can we find:

 the connected component containing a
given node?

o all connected components in the graph?

Connected components

To find the connected component
containing a given node:
e Perform a DFS starting from that node

o The set of visited nodes is the connected component
To find all connected components:

e Pick a node that doesn't have a connected
component yet

e Use the algorithm above to find its connected
component

» Repeat until all nodes are in a connected component

Strongly-connected components

In a directed graph, there are two notions
of connectedness:

o strongly connected means there is a path from
every node to every other node

o weakly connected means the graph is connected if
you ignore the direction of the edges
(the equivalent undirected graph is connected)

1 =2« -5

~ This graph is
weakly c%onnected, %}/
but not strongly

Nt

connected (why?)

Strongly-connected components

You can always divide a directed graph into its
strongly-connected components (SCCs):

1,2« 5

oAy

4

on

In each strongly-connected component, every
node is reachable from every other node

e The relation “nodes A and B are both reachable from each
other” is an equivalence relation on nodes

e The SCCs are the equivalence classes of this relation

Strongly-connected components

To find the SCC of a node A, we take the
intersection of:

e the set of nodes reachable from A

e the set of nodes which A can be reached from
(the set of nodes “backwards-reachable” from A)

This gives us all the nodes B such that:

o there is a path from A to B, and
o thereis a path from Bto A

To find the set of nodes backwards-
reachable from A, we will use the idea of the
transpose of a graph

Transpose of a graph

To find the transpose of a directed graph,
ﬂip the direction of all the graph's edges:

Ay S
\ / ; * \GL p
Graph | Transpose

Note that: there is a path from A to B in
the original graph iff there is a path from
B to A in the transpose graph!

Strongly-connected components

To find the SCC of a node (such as 2),
perform a DFS in the graph and the

transpose graph:

1%2%5 1%2—»5

N Ny T

3 =4 3« 4
et Nelot
Graph Transpose

The nodes visited in both DFSs are the SCC
— in this case {1, 2, 3, 4}

Strongly-connected components

To find the SCC of a node A:

» Find the set of nodes reachable from A, using
DES

e Find the set of nodes which have a path to A,
by doing a DES in the transpose graph

e Take the intersection of these two sets
Implementation in practice:

 When doing the DES in the transpose graph, we
restrict the search to the nodes that were
reachable from A in the original graph

What do SCCs mean?

The SCCs in a graph tell you about the
cycles in that graph!

o If a graph has a cycle, all the nodes in the cycle
will be in the same SCC

e If an SCC contains two nodes A and B, there is a
path from A to B and back again, so there is a
cycle

A directed graph is acyclic ift:
e All the SCCs have size 1, and

» no node has an edge to itself (SCCs do not take
any notice of self-loops)

Cycles and SCCs

Here is the directed graph from before.

Notice that:

e The big SCC is where all the cycles are
 The acyclic “parts” of the graph have SCCs of size 1

The SCCs characterise the cycles in the graph!

1,-24 5

Ny

3 4

e

Graph algorithms:
postorder DFS,

detecting cycles,
topological sorting

Topological sorting

Here is a directed acyclic graph (DAG) with
courses and prerequisites: (o

We might want Ces
to find out: what %
is a possible order

to take these
courses in?

This is what
topological sorting gives us. Cara)

Note that the graph must be acyclic!

Example: topological sort

A topological sort of the nodes in a DAG is a
list of all the nodes, so that if there is a path
from u to v, then u comes before v in the list

Every DAG has a

topological sort,
often several

012345678 1s a
topological sort of
this DAG, but
015342678 isn't.

Postorder depth-first search

To implement topological sorting we'll need
a variant of DFS called postorder depth-first
search

To do a postorder DFS starting from a node:

e mark the node as reached

 for each outgoing edge from the node,
recursively DES the target of that edge,
unless it has already been reached

e visit the node

In postorder DFS, we visit each node after
we Visit its outgoing edges!

Postorder depth-first search

Visit order:

DES node 1 (don't visit it yet, but
remember that we

have reached it) % 2+ 5

3—»4

v_

O = current = =unvisited . =visited

Postorder depth-first search

Visit order:

Follow edge 1 — 3,
recursively DFS node 3

1_,2%5\

\/

v
7,,

O = current '~ =unvisited . =visited

Postorder depth-first search

Visit order: 6

Follow edge 3 — 6,
recursively DESnode 6

The recursion bottoms — -’
out, visit 6! \ | \ /

O =current = unvisited . =visited

Postorder depth-first search

Visit order: 6

Recursion backtracks to 3

O = current '~ =unvisited . =visited

Postorder depth-first search

Visit order: 6

Follow edge 3 — 4,
recursively DESnode 4

1o-2a s

O = current '~ =unvisited . =visited

Postorder depth-first search

Visit order: 6 2

Follow edge 4 — 2,
recursively DESnode 2 B
The recursion bottoms | Q |
out again and we visit 2 \ | /
'3 —» 4
U

O =current = unvisited . =visited

Postorder depth-first search

Visit order: 6 2 4

The recursion backtracks and
now we visit 4

L -2 5

O = current '~ =unvisited . =visited

Postorder depth-first search

Visit order: 624 3

The recursion backtracks and
now we visit 3

O = current '~ =unvisited . =visited

Postorder depth-first search

Visitorder: 62431

The recursion backtracks and
now we visit 1

O = current '~ =unvisited . =visited

Why postorder DFS?

In postorder DES:

« We only visit a node after we recursively DES its
successors (the nodes it has an edge to)

If we look at the order the nodes are

visited (rather than the calls to DES):

o If the graph is acyclic, we visit a node only after
we have visited all its successors

If we look at the list of nodes in the order

they are visited, each node comes after all

its successors (look at the previous slide)

Topological sorting

Visitorder: 62431

In topological sorting, we want each node to come
before its successors...

With postorder DFS, 2 - S
each node is visited \ /
after its successors! f

Idea: to topologically sort, ‘ ‘
do a postorder DEFS, \ / |
look at the order the nodes r |

are visited in and reverse it

Small problem: not all nodes are visited!
Solution: pick a node we haven't visited and DEFS it

Topological sorting

To topologically sort a DAG:

» Pick a node that we haven't visited yet
e Do a postorder DES on it
» Repeat until all nodes have been visited

Then take the list of nodes in the order
they were visited, and reverse it

If the graph is acyclic, the list is
topologically sorted:

o If there is a path from node A to B, then A comes
before B in the list

Preorder vs postorder

You might think that in preorder DES, we
visit each node before we visit its

SUCCessSSors 1+ 2« 5
But this is not the case, N /
in this example from 3" 4]

earlier we visited 6 before
its predecessor 4, because we 7:; v
happened to go through 3 W,

Preorder DEFS visits the nodes in “any old
order” — postorder is more well-behaved

Detecting cycles in graphs

We can only topologically sort acyclic
graphs — how can we detect if a graph is
cyclic?

Easiest answer: topologically sort the
graph and check if the result is actually
topologically sorted

e Does any node in the result list have an edge to a

node earlier in the list? If so, the topological
sorting failed, and the graph must be cyclic

e Otherwise, the graph is acyclic

Kosaraju's algorithm (not on exam)

Kosaraju's algorithm finds all the SCCs in a
directed graph in linear time

Recall our algorithm to find the SCC of a node A:

e Do a DFS starting from node A

e Do a DFS starting from node A in the transpose graph
e Take the intersection of the two visited sets

In Kosaraju's algorithm, we first do a DES

starting from node A, giving a set S of visited
nodes

Then we find the SCCs of all nodes in S, by doing
several DESes in the transpose graph!

Kosaraju's algorithm (not on exam)

Start with a node A, do a topological sort
starting from A

Now take the visited nodes in topological
order, and for each node:

o If we have already assigned the node an SCC, skip it

e Otherwise, do a DFS starting from that node in the
transpose graph

e The SCC of that node is the intersection of the two
visited sets

Read up on it if you're interested!

o http://scienceblogs.com/goodmath/2007/10/30/comput
ing-strongly-connected-c/

An alternative:

depth-first forests
(not on exam)

Depth-first forests

Instead of producing a list of nodes, DES can
return a tree that shows how the nodes
were explored (the recursion structure):

1 2« 5 1

SV
R

Depth-first forests

Repeating until all nodes have been
visited, we get a forest (set of trees):

1%2%5, 1

http://scienceblogs.com/goodmath/2007/10/30/computing-strongly-connected-c/
http://scienceblogs.com/goodmath/2007/10/30/computing-strongly-connected-c/

Depth-first forests

A graph is cyclic iff the graph has an edge
from a node in the tree to its ancestor:

Edge from
‘£ 4tol-cyclic

S O

1
ISV

Depth-first forests

You can also topologically sort a graph by
flattening the forest into a list!

Depth-first forests

The idea: make DFS return a forest of nodes,
instead of a list

o Pre/post-order? Those are just different ways to flatten the
forest

Many algorithms based on DES come out pretty
elegant that way

« Especially in a functional setting, where trees are very easy to
deal with

e You can view the graph as a forest, plus some extra edges that
go upwards, downwards or sideways in the tree

If you're interested, you can read the paper
“Graph algorithms with a functional flavour”

which is on the course webpage

Summary

Graphs are extremely useful!

« Common representation: adjacency lists (or just implicitly as
references between the objects in your program)

Several important graph algorithms:

« Reachability — can I get from node A to B?
e Does the graph have a cycle?
 Strongly-connected components — where are the cycles in the graph?

« Topological sorting — how can I order the nodes in an acyclic graph?
All based on depth-first search!

« Enumerate the nodes reachable from a starting node
 Preorder: visit each node before its successors
 Postorder: visit each node after its successors, gives nicer order

« Common pattern in these algorithms: repeat DES from different
nodes until all nodes have been visited

