Examination, Models of Computation
(DIT310/TDA183/TDA184)

e Date and time: 2017-04-11, 14:00-18:00.
 Author! /examiner: Nils Anders Danielsson.

e Responsible during the examination: Daniel Schoepe. Telephone number:
6166. Visits to the examination rooms: ~15:00 and ~17:00.

o Authorised aids (except for aids that are always permitted): None.

o The GU grades Pass (G) and Pass with Distinction (VG) correspond to
the Chalmers grades 3 and 5, respectively.

e To get grade n on the exam you have to be awarded grade n or higher on
at least n exercises.

¢ A completely correct solution of one exercise is awarded the grade 5. Solu-
tions with minor mistakes might get the grade 5, and solutions with larger
mistakes might get lower grades.

o Exercises can contain parts and/or requirements that are only required
for a certain grade (or higher). To get grade n on such an exercise you
have to get grade n or higher on every part marked with grade n or lower,
and you have to fulfil every requirement marked with grade n or lower.

e Do not hand in solutions for several exercises on the same sheet.
o Write your examination code on each sheet.

¢ Solutions can be rejected if they are hard to read, unstructured, or poorly
motivated.

o After correction the graded exams are available in the student office in
room 4482 of the EDIT building. If you want to discuss the grading you
can, within three weeks after the result has been reported, contact the
examiner and set up a time for a meeting (in which case you should not
remove the exam from the student office).

! Thanks to Daniel Schoepe for feedback.



1. (a) For grade 3: Give an example of a set A for which A — Bool is
countable, and give an example of a set B for which B — Bool is
not countable (where Bool is a set with two elements, true and false).
You do not need to provide proofs.

(b) For grade 4: Either prove that the set Bool — N is countable, or that
it is not countable.

2. Give concrete syntax for the y expression e for which the standard x
encoding (as presented in the lectures), given using concrete syntax, is

" e = Rec(Zero(), Apply(Var(Succ(Zero())), Var(Zero()))).

Assume that the number 0 corresponds to the variable z, and that the
number 1 corresponds to the variable f.

3. Is the following function y-decidable?

f € CExp — Bool
f e=if [apply e "77] =" 0" then true else false

Here CEzxp is a set containing the abstract syntax of every closed x ex-
pression, and " n " is the standard encoding of the natural number n.
For grade 3: Motivate your answer.

For grade 4: Provide a proof. You are allowed to make use of Rice’s
theorem, and the fact that the halting problem is undecidable, but not
other results stating that some function is or is not computable (unless
you provide proofs).

For grade 5: You may not use Rice’s theorem (unless you provide a proof).

4. TIs the following function y-decidable?

f € CExp — Bool
fe=if apply e "7"="0"then true else false

Note the difference between this function and the one in the previous
exercise.

The grade criteria of the previous exercise apply to this one as well.



5. Consider the following Turing machine:

(a)

(b)

Input alphabet: { 0,1 }.
Tape alphabet: {0,1,1,,}.
States: { sy, 1, Sq, S3, S4, S5 }-
Initial state: sg.

Transition function:

(0,1,L)

(1,L,R) (1,1,L)

For grade 3: What is the result of running this Turing machine with
110 as the input string? Does it halt successfully? In that case, what
is the resulting string?

For grade 4: Let us represent natural numbers (0, 1, 2..) in the
following way: the number n € N is represented by a string with n
ones followed by one zero (1"0). Does this Turing machine witness
the Turing-computability of some total function from N to N? In
either case you should provide a proof. If the answer is yes, then
you should additionally give a simple description of the function that
is witnessed, without any reference to Turing machines (no proof is
needed for this part).



6. Prove that if rec is removed from PRF, then the following function is not
computable:

is-zero € N — N
is-zero n = if n = 0 then 1 else 0

Hint: Prove that every n-ary function f is monotone, in the sense that, for
all n-ary vectors py, po, if p; < py (meaning that index p; i < index py i
for every i satisfying 0 < i < n), then [f] p; <[f] po-

The abstract syntax of PRF:

0<i<n
zero € PRF suc € PRF, proj 1 € PRF,
fePRF,, gs € (PRF )™ f e PRF, g€ PRF,_,
comp f gs € PRF, recf g€ PRF_,

The denotational semantics of PRF:

[-] € PRF, — (N* = N)

[zero] nil =0
[suc] (nil, n) =1+n
[proj ] p = indezx p i

[comp f gs] p = [f] ([gs]* p)

[rec f g] (p,zero) = [f]p

[rec f g] (p,suc n) = [g] (p[rec f g] (p,n),n)
[-]* € (PRF,,)" — (N™ —N")

[nil]* p = nil

s, f1" p = 1fsI* o, [f] p



