Parallel Functional Programming
Lecture 3

Mary Sheeran

with thanks to Simon Marlow for use of slides

and to Koen Claessen for the guest appearance

http://www.cse.chalmers.se/edu/course/pfp

par and pseq

MUST

Pass an unevaluated computation to par

It must be somewhat expensive

Make sure the result is not needed for a bit

Make sure the result is shared by the rest of the
program

par and pseq

MUST
Pass an unevaluated computatia

to par
It must be somewhat expensive
a bit

t of the

Make sure the result is not neec

Make sure the result is shared k
program

Demands an operational understanding of program execution

Eval monad plus Strategies

Eval monad enables expressing ordering between
instances of par and pseq

Strategies separate algorithm from parallelisation
Provide useful higher level abstractions

But still demand an understanding of laziness

A monad for deterministic parallelism

Simon Marlow Ryan Newton Simon Peyton Jones
Microsolt Research, Cambeidge, UK Inkel, Hhadson, MA, LLSA Microsofl Research, Cambridge, UK.
smonmar@microsoft.com ryan.r.nawton@intal com simonp)@microsoft com
Abstract pum inferface, while allowing a impic mentation. We give 2

We prsent 2 mew peogramming moded for delerministic
Tﬂp mmmmmmmwmm

explict gramutarity, but allows dymamic constraction of
datafiow networks that ax scheduled at nuntime, while remaining
deterministic and pu. The implementation & based on monadic
conozreacy, which has untl now caly been used 1o stmulate con-
cusTency in fenctional languages, rather than (o prowide paralieBsm.
We present the AP with its semantics, and argue that peralie] exe-
cution Is delerministic Purthermone, ;::m:mqmtwt
stealing scheduler mplemonted & a 1l Bbrary, and we show
that it performs & east as well as the ex isting pandiel programming
models in Haskell

Haskell’11

formal operational s mantics for the new inkerface.

Our programming model & chosely ®laed Lo a number of oth-
ers; 2 detaled can be found in Section & Probably the
closest miative is pi (Nikhil 2001), a vartant of Haskell that a0
has §-stractemes; the principal differnce with owr mode] is tat the
momad allows us 10 ®&in relemential tnmsparency, which was lost
in pii with the introduction of I-structeres. The Lepet domain of owr
pngl—nﬂm '] xl Is 2&9“ Ilqixk;-lhlhm. rather

Ine-grained oy peraliclism (for e katier Data Parad-
tll&nmgellmsmm

Our implementation Is based on monadic concurrency (Scholtz

1995), a echnique that has peeviously been wed 1o pood effect 1o

simulaie concurmency i 2 soquential functional knguage (Clacsen

Builds on Koen’s paper

FUNCTIONAL PEARLS
A Poor Man's Concurrency Monad

Koen Claessen
Chalmers Universiiy of Technology

cmail: koen@cs.chalmers.se

Abstract

Without adding any primitives to the language. we define a concurrency monad trans
former in Haskell. This allows us to add a limited form of concurrency to any existing
monad. The atomic actions of the new monad are lifted actions of the underlying monad.
Some extra operations. such as fork. to initiate new processes, are provided. We discuss
the implementation. and use some examples to illustrate the usefulness of this construc

tion.

JFP’99 Call this PMC

the Par Monad

Our goal with this work is to find a parallel programming model
that is expressive enough to subsume Strategies, robust enough to
reliably express parallelism, and accessible enough that non-expert
programmers can achieve parallelism with little effort.

The Par Monad

Par is a monad for

parallel computation
data Par

instance Monad Par

Parallel computations
are pure (and hence

runPar :: Par a -> a deterministic)

fork :: pPar () -> Par O forking is explicit

4
data Ivar " results are communicated
hew :: Par (Ivar a) through IVars

get :: Ivar a -> Par a
put :: NFData a => Ivar a -> a -> Par ()

Slide by Simon Marlow

I\Var

a write-once mutable reference cell
supports two operations: put and get

put assigns a value to the IVar, and may only be executed
once per lvar Subsequent puts are an error

get waits until the IVar has been assigned a value, and then
returns the value

the Par Monad

Implemented as a Haskell library
surprisingly little code!
includes a work stealing scheduler
You get to roll your own schedulers!
Programmer has more control than with Strategies
=> |ess error prone?
Good performance (comparable to Strategies)
particularly if granularity is not too small

Par expresses dynamic dataflow

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do

1 <- new

fork (do x <- p; put 1 x)

return 1

How does this make a dataflow graph?

do v <- new

fork $ put v (f x)
get v do v <- new

fork $...

get v

A bit more complex...

do vl <- new
V2 <- hew
fork $ put vl (f x)
fork $ put v2 (g x)
get vl
get v2

return (vl + v2)

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [Db]
parMapM f as = do

ibs <- mapM (spawn . f) as

mapM get ibs

Dataflow problems

* Par really shines when the problem is easily
expressed as a dataflow graph, particularly an
irregular or dynamic graph (e.g. shape
depends on the program input)

* |dentify the nodes and edges of the graph
— each node is created by fork

— each edge is an IVar

Example

* Consider typechecking (or inferring types for) a
set of non-recursive bindings.

* Each binding is of the form for variable x,
expression e

* To typecheck a binding:
— input: the types of the identifiers mentioned in e
— output: the type of x

* So this is a dataflow graph
— a node represents the typechecking of a binding
— the types of identifiers flow down the edges

Dataflow

e Consider typechecking a set of (non-recursive)
bindings:

* treat this as a dataflow graph:

Implementation

* We parallelised an existing type checker
(nofib/infer).

* Algorithm works on a single term:

data Term = Let varId Term Term | ...

* So we parallelise checking of the top-level Let
bindings.

let x1 = el 1in
let x2 = e2 1in

let x3 = e3 1in

The parallel type inferencer

* Given:
inferTopRhs :: Env -> Term -> PolyType

makeEnv :: [(varIid,Type)] -> Env

* We need a type environment:

type TopEnv = Map VvarId (Ivar PolyType)

* The top-level inferencer has the following
type:

inferTop :: TopEnv -> Term -> Par MonoType

Parallel type inference

inferTop :: TopEnv -> Term -> Par MonoType
inferTop topenv (Let x u v) = do
VU <- hew

fork $ do
let fu = Set.toList (freevars u)

tfu <- mapM (get . fromJust . flip Map.lookup topenv) fu
Tet aa = makeeEnv (zip fu tfu)

put vu (inferTopRhs aa u)
inferTop (Map.insert x vu topenv) v

inferTop topenv t = do

-- the boring case: invoke the normal sequential
-- type inference engine

Create nodes and edges and let the scheduler do the work
No dependency analysis required!

Maximum parallelism for little programmer effort
Dynamic parallelism

Very nice ©

Implementation

e Starting point: A Poor Man’s Concurrency Monad
(Claessen JFP’99)

* PMC was used to simulate concurrency in a
sequential Haskell implementation. We are using
It as a way to implement very lightweight non-
preemptive threads, with a parallel scheduler.

* Following PMC, the implementation is divided
into two:

— Par computations produce a lazy Trace

— A scheduler consumes the Traces, and switches
between multiple threads

Traces

* A “thread” produces a lazy stream of
operations:

data Trace
Fork Trace Trace
Done

forall a . Put (Ivar a) a Trace
forall a . New (Ivar a -> Trace)

|
| forall a . Get (Ivar a) (a -> Trace)
|
|

The Par monad

* Parisa CPS monad:

hewtype Par a = Par {
runcont :: (a -> Trace) -> Trace

}

instance Monad Par where
return a = Par $ \c -> c a
m >>= k Ppar $ \c -> runCont m $
\a -> runcont (k a) c

Operations

fork :: Ppar O -> pPar Q)
fork p = Par $ \c >
Fork (runcont p (_ -> Done)) (c O)

new :: Par (Ivar a)
hew = Par $ \c -> New c

get :: Ivar a -> Par a
get v = Par $ \c -> Get v C

put :: NFData a => Ivar a -> a -> Par ()
put v a = deepseq a (Par $ \c -> Put v a (c 0))

e.g.

* This code:

do

X <- new
fork (put x 3)

r <- get X
return (r+l1)

* will produce a trace like this:

New (\x ->
Fork (Put x 3 $ Done)

(Get x (\r —>
c (r + 1))))

The scheduler

* First, a sequential scheduler.

The currently running
thread

sched :: schedstate -> Trace -> I0 ()

type Schedstate = [Trace]

Why 10?
Because we’re going
to extend it to be a

The work pool, parallel scheduler in a
“" n
runnable threads moment.

Representation of IVar

nhewtype IVar a = Ivar (IorRef (IvarcContents a))

data Ivarcontents a = Full a | Blocked [a -> Trace]

set of threads
blocked in get

Fork and Done

sched state Done = reschedule state

reschedule :: Schedstate -> 10 ()
reschedule [] return ()
reschedule (t:ts) sched ts t

sched state (Fork child parent) =
sched (child:state) parent

New and Get

sched state (New f) = do
r <- newIORef (Blocked [])
sched state (f (Ivar r))

sched state (Get (Ivar v) c) = do
e <- readIORef v
case e of
Full a -> sched state (c a)
Blocked cs -> do
writeIoRef v (Blocked (c:cs))
reschedule state

Put

sched state (Put (Ivar v) a t) = do
cs <- modifyIOorRef v $§ \e -> case e of
case e of
Full _ -> error "multiple put”
Blocked cs -> (Full a, cs)
Tet state' = map ($ a) cs ++ state

sched state' t
Wake up all the

blocked threads, add
them to the work
pool

modifyIORef :: IORef a -> (a -> (a,b)) -> 1I0 b

Finally... runPar

rref is an IVar to hold
the return value

runPar :: Par a -> a
runPar X unsafePerformio $ do

rref <- newIorRef (Blocked [])™ the “main thread”
sched [] $ stores the result in rref

runcont (x >>= put_ (Ivar rref))

(const Done)
r <- readIoRef rref
case r of
Full a -> return a
-> error "'no result”

if the result is empty,
the main thread must
have deadlocked

e that’s the complete sequential scheduler

A real parallel scheduler

* We will create one scheduler thread per core

* Each scheduler has a local work pool

— when a scheduler runs out of work, it tries to steal
from the other work pools

* The new state:

data schedstate = SChedStat

{ no :: Int,

workpool :: IORef [Trace], Local work pool

idle : : IORef [Mvar Bool],

scheds :: [Schedstate] dle schedulers
} (shared)
Other schedulers (for
stealing)

New/Get/Put

* New is the same

* Mechanical changes to Get/Put:
— use atomicModifylORef to operate on IVars

— use atomicModifylORef to modify the work pool
(now an IORef [Trace], was previously [Trace]).

reschedule

reschedule :: Schedstate -> 10 ()
reschedule state@schedstate{ workpool } = do
e <- atomicModifyIoRef workpool $ \ts ->
case ts of
[] -> ([], Nothing)
(t:ts') -> (ts', Just t)
case e of

Just t -> sched state t
Nothing -> steal state

Here’s where
we go stealing

stealing

steal :: Schedstate -> I0 ()
steal state@schedstate{ scheds, no=me } = go scheds
where
go (x:xs)
| no x == me go Xs
| otherwise = do
r <- atomicModifyIorRef (workpool x) $ \ ts ->
case ts of
[] -> ([1, Nothing)
(x:xs) -> (xs, Just x)
case r of
Just t -> sched state t
Nothing -> go xs
go [] = do
-- failed to steal anything; add ourself to the
-- idle queue and wait to be woken up

runPar :: Par a -> a
runPar X = unsafePerformIOo $ do
let states =
main_cpu <- getCurrentCPU
m <- newEmptyMmvar
forM_ (zip [0..] states) $ \(cpu,state) ->

forkOnIO cpu $. _‘:’ﬂﬂ_,_—————/VTheﬁnamthmmd"
1f (cpu /= main_cpu)

runs on the current

CPU, all other CPUs
run workers

then reschedule state
else do
rref <- newIORef Empty
sched state $
runCont (x >>= put_ (Ivar rref))
(const Done)
readIORef rref >>= putMvar m

An MVar
r <- takemMvar m communicates the
case r of Full a -> return a result back to the

_ => error "no result” caller of runPar

0,
blackscholes —+— 99%
minimax —=«—
mange’

speedup 95%

50%

cores

Modularity

* Key property of Strategies is modularity

parMap f xs = map f xs using parList rwhnf

* Relies on lazy evaluation

— fragile

— not always convenient to build a lazy data structure
* Par takes a different approach to modularity:

— the Par monad is for coordination only

— the application code is written separately as pure
Haskell functions

— The “parallelism guru” writes the coordination code

— Par performance is not critical, as long as the grain
size is not too small

Par monad compared to Strategies

Separation of function and parallelisation done
differently

Eval monad and Strategies are advisory

Par monad does not support speculative parallelism
as Stategies do

Par monad supports stream processing pipelines
well

Note: Par monad and Strategies can be combined...

Par Monad easier to use than par?

fork creates one parallel task
Dependencies between tasks represented by Ivars
No need to reason about laziness

put is hyperstrict by default

Final suggestion in Par Monad paper is that maybe par
is suitable for automatic parallelisation

Next

Continue working on Lab A (due 11.59 April 18)

Friday 15.15 EC Nikita on GHC Heap Internals,
garbage collection etc.

Erlang starts next week (mon and fri)

Don’t miss David Duke next Thursday on
Skeletons for Parallel Scientific Computing (very cool)

