Homework 4

Exercise 1: Find closed λ -terms F such that

- 1. F x = F (called the "eater")
- 2. F x = x F

Exercise 2: We consider a type T with a constant a:T. Find two pairs (t,u) of terms $t:T\to T$ and u:T such that t:u=a.

Exercise 3: We recall the nameless presentation of typed lambda-calculus with

$$t \; ::= \; n \; | \; \lambda T.t \; | \; t \; t \; | \; bv \qquad \quad bv \; ::= \; \mathsf{true} \; | \; \mathsf{false}$$

$$n ::= 0 \mid n+1$$
 $T ::= Bool \mid T \rightarrow T$

We use also sequences of terms $ts := () \mid (ts,t)$ and contexts $\Gamma, \Delta := () \mid \Gamma.T$.

Define in Agda the typing relation $\Gamma \vdash t : T$. From this we can define the relation $\Delta \vdash ts : \Gamma$ by $\Delta \vdash () : ()$ and $\Delta \vdash (ts,t) : \Gamma T$ if $\Delta \vdash ts : \Gamma$ and $\Delta \vdash t : T$.

Define a substitution operation u[ts] such that $() \vdash u[ts] : T$ given $\Gamma \vdash t : T$ and $() \vdash ts : \Gamma$. (Hint: One can define first the concatenation Γ, Δ of two contexts and define more generally $\Delta \vdash u[ts] : T$ if $() \vdash ts : \Gamma$ and $\Gamma, \Delta \vdash u : T$.)

Exercise 4: Show that a lambda term in normal form can be written $\lambda x_1: T_1....\lambda x_k: T_k...M_l$ where we can have k=0 or l=0 and $M_1,...,M_l$ are in normal form. If k=0 the term is of the form x M_1 ... M_l and if l=0 the term is of the form $\lambda x_1...\lambda x_k$ x. Another way to state this is that we have the following grammar for terms in normal form

$$N ::= \lambda x : T.N \mid K$$
 $K ::= x \mid K N$

Use this to enumerate the closed terms of the following types (ι is a ground type)

- 1. $\iota \to \iota$
- 2. $\iota \to \iota \to \iota$
- 3. $(\iota \to \iota) \to \iota \to \iota$
- 4. $\iota \to (\iota \to \iota) \to \iota$
- 5. $(\iota \to \iota) \to \iota$
- 6. $((\iota \to \iota) \to \iota) \to \iota$