
Web applications Joachim von Hacht

Workshop 3: A Component Based Approach,
Java Server Faces

Objectives

Same as previous workshops (expose the ProductCatalogue). We need;

• GlassFish application server.

• Java Server Faces (JSF) and Facelets (possibly must add as framework in Net-
Beans).

• Context and Dependency Injection (CDI).

• JSF and Bean validation.

• A higher level component library for JSF (PrimeFaces, ...).

Please: Inspect code samples from the lectures (on course page)! Every-

thing you need should be there. will hopefully save you a lot of time!

Final date: See course page

1 The JSF request cycle

Download the JSF request cycle demo from course page. Run and inspect output from
GlassFish. What happens? When?

Note The URL's, to trigger the JSF-system, see <servlet-mapping> in web.xml (com-
pare how to trigger JAX-RS).

2 GUI

The look is (should be) very similar to previous workshops (using Bootstrap).

1 Produced with Lyx, the open source wordprocessor



Web applications Joachim von Hacht

3 Design

Application design is given by the picture below. The design is a bit overkill for this small
application (describes the general approach). Some classes will be very small. Arrows
are associations.

• Overall page design is given by template.xhtml. Other xhtml is swapped in and
out of template.

• We have one JSF page for each CRUD operation.

• Each page has a CDI managed bean (yellow) holding page data (input/output
channel).

• The control layer is handled by control beans (orange). Any modi�cation of the
model is handled by this layer.

2 Produced with Lyx, the open source wordprocessor



Web applications Joachim von Hacht

• The SingletonShop is a bean wrapping the shop model.

• faces-con�g.xml handles navigation (outcome from control beans). There could be
other navigation (master detail).

• web.xml contains mappings to trigger JSF (JSF Servlet). Also used if implementing
authorization.

• beans.xml in needed by CDI.

4 Implementation

All associations between beans should be realized by CDI injection. Final project struc-
ture in appendix.

1. Download the skeleton code from course page. It should be possible to run. There
will be some navigation error messages, no problem leave for now.

2. The �les to work with are: The partials xhtml-pages, the backing beans and the
control beans (incl. possibly modi�cations of faces.con�g.xml)

3. Start with productList functionality i.e. productsList.xhtml and it's backing bean.
Goal is to list the ProductCatalogue. Add CDI annotations as needed (select
correct scope)

4. Add pagination for the list.

5. Master-Detail: Insert links for add, edit and delete pages in list page.

6. Start implementing the add page and it's beans. Add CDI annotations as needed
(select appropriate scope)

3 Produced with Lyx, the open source wordprocessor



Web applications Joachim von Hacht

7. Implement edit and delete functionality (pages very similar to add). Use view-
parameters in edit and delete pages to transfer data from list page. Select scope
for beans.

8. Add navigation. Prefer rule based navigation i.e. use faces-con�g.xml.

4.1 Validation

Add validation. Try both JSF validation and Bean validation (prefer). There are some
validation messages in src/main/resources. Use!

5 PRG

Check that the PRG-pattern is implemented.

6 Authentication and Authorization

(Optional) Try to add �the o�cial� JEE style of authorization, see code samples. Use
the login page and the User class. Add an AuthBean class to handle login/logout.

7 Using a JSF component suite

(Optional) Clone the project and try a higher level component suite (PrimeFaces recom-
mended). This may end in a single page ProductCatalogue (using advanced AJAX table
components).

4 Produced with Lyx, the open source wordprocessor



Web applications Joachim von Hacht

Appendix

5 Produced with Lyx, the open source wordprocessor


