Object Relational Mapping

and JPA Intro
JPA Slides #1

Content

- Persistence

- Object relational mapping (ORM)
- Object relational mismatch

- Java Persistence AP

- JPA Config files

- JavaDB (Derby)

Persistence

<
=S
D
xS

')Q‘Z’

Persistent object: Object that outlives the execution of the program
- Have to store for later retrieval (next execution)

Many persistence mechanisms
- Flatfiles
- Serialization (binary)
- XML/JSON (text)
- Different types of databases ..
- .. we will only use a relational database

Object Relational Mismatch

Relational databases and object orientation doesn't fit!
- Object orientation: Objects
- Relational databases: Sets of tuples

Major clash, the OO-relational mismatch
- Relational databases won't change, mathematical foundations...
- Unsolved problem, ..

Some points
- ldentity? Equality?
- Associations? Relationships? Multiplicity!
- Inheritance?
- Generics?
- Object graphs! Lazy fetching? Lazy object creation?
- Caching? Concurrency? Transactions?...
- Ad hoc searching
- Possibly don't need objects (ex. statistics)
- Should database or application do the work?
- Databases very efficient at searching/sorting, etc .. we prefer!

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

Handling the Mismatch

O/R Mapping

Objects in Memory

Middleware Relational Database

At least three different options

Option 1
- Surrender: l.e. don't use OO
- Just use primitive types, String, int, ..
- Good for massive reads
- Example: Product Catalog to web
- Fastest possible solution
- Not a solution for complex cases
- Many cases seems simple at start, then complexity creeps up ..!

Option 2

- Try to bridge the mismatch
- Map between objects and tuples, object relational mapping. ORM
- No general best strategy

- Must know how database in going to be used

- Mostly reads? Mostly writes?

- Different strateqgies
- Very complex task to implement (we don't

- We use some middleware (glue layer)

Option 3
- Your data in not ‘relational” use some other persistence approach
- NoSQL ..

http://www.agiledata.org/essays/mappingObjects.html
http://www.agiledata.org/essays/mappingObjects.html
http://www.ignoredbydinosaurs.com/2013/05/explaining-non-relational-databases-my-mom

Java Persistence API

POJO
based
persistence
model
Support for Support for
pluggable enriched
persistence domain
providers maodeling

Inheritance, polymorphism, etc.
—

Usable in Java Expanded
EE and Java SE query
environments language

Standardized
object/relation
al mapping

Using annotations and/or XML H

Java APIs for persistence
- Java DataBase Connectivity, JDBC

- Low level API, no ORM (not used by us)

- Using embedded SQL strings as parameters

- JEE spec. makes JDBC mandatory

- Java Data Objects, JDO
- Very (too?) general, relational database, object database, ...
- Not used in course, possible fading away..?

- Java Persistence API, JPA 2.x

- Supports relational databases and NoSQL

- This will be our middleware (glue application and database)

- "The Java Persistence API (JPA) provides Java developers with an
object/relational mapping facility for managing relational data in Java
applications.”

- Possible to use JPA in JEE and JSE environments (= JSE, Tomcat or
JUnit)

- JSE Environment
- Have to supply many dependencies
- Have to handle a lot in application (more to code)
- JEE environment, GlassFish, ..
- Fewer dependencies
- Container will handle a lot. We use!
- Some Java Persistence API areas:
- Object/relational mapping
- The Java Persistence API, to handle persistent objects

https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Data_Objects
https://en.wikipedia.org/wiki/Java_Data_Objects
https://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
https://en.wikipedia.org/wiki/NoSQL

- The Query language, to query database in an OO fashion
- The Java Persistence Criteria API, same as above but typesafe

JPA and JDBC

Java Application

T JPA

JDBCAPI
JDBC Driver

TT1 L

JDBC Driver ‘ JDBC Driver |

JPA built on top of JDBC
- We'll need a JDBC Driver (database specific middleware)
- Possibly dependencies in pom (Eclipselink)
- Handled by NetBeans

https://en.wikipedia.org/wiki/JDBC_driver
http://www.eclipse.org/eclipselink/

JPA Config Files

Projects X |Files | Services El ("5 persistence xml x| [glassfish-resources.xml x|

,A
=
[l

¢ @) jpa_managing

= [seurce || history B-8-

Qe s #&%

j 00 v¥ D

9~ [Web Pages
o [METAANF 1 <2xml version="1.9" encoding="UTF-8"?> [=]
o O WEBHNF 2 <IDOCTYPE resources PUBLIC '-//ClassFish.org//07D Gl
[8 index.html 3 <resources>
o Cf RESTAul Web Services 4 <jdbc-connection-pool allov-nan-(umpane@t-(aller e" assoclate-with-thread
= <property name=" value="1localhost" />
3 <property nam
7 <property name= 5
8 <property name="

9 <property name="
10 <property name="

o [META-NF

& persistence sl 1 <property name='dri
12 </1dbc-connection-pool=
| 13 <jdbc- resource enabled="true"
¢ (8 oth= 14 </resources=
9 [srcitestiresources 15

yrivert />

jndi-name="jdbc/test" object- type="user'

pool-nam|

defsuTt packages
[l T

B arquillian.xml
& test-persistencexm

Test Results Output X |HTTP Server Monitor

T g ' || [{ [Build (arquillian) = | java DB Database Process x
o [Dependencies
e iy BUILD
est Dependencies I RSN ST R

Total time: 1.4125
Finished at: Thu Nov 12 18:23:11 CET 2015
[N i

o [Java Dependencies
o [Project Files

[l

There will be about 4 config files involved

src/main/setup/glassfish-resources.xml,

- Technical data for the database, location, JDBC driver and more (server

specific).

Mostly generated by NetBeans, possibly some tweaking

src/main/resources/META-INF/persistence.xml

- Containing persistence units (PU)
- What classes to persist and more

- Server independent, application specific

src/test/resources/test-persistence xml
- Same as persistencexml but for testing
src/test/resources/arquillian.xml

- Config for embedded EJB container for testing, more later ...

Projects |Files 2 n} [pom xml [jpa_managing] x|’ [&] SQL 1 [idbe:derby:fflocalhost15..] x|
9 B Databases [4]

E B aai s s s e e - e }‘db(derby //localhost 1527/sample [app on APP] ‘v‘ BEEOMO
& (g Java DB L select * from APP.MANUFACTURER; n
o [Drivers e i
o~ [EF] jdbc:derby:/flocalhost: 1527/abgabe [app on APP]
¢ [jdbc:derby: fflocalhost 1527/sample [app on APP]
¢ & arp
- Tables
¢ [cusTomer select * from APP.MANUFAC.._ x
Bl cusToMER_ID //%
[DISCOUNT_CODE [iE’] B & @e Size: [20 | Total Rows: 30 Page: 1 of 2 Matching R|
o ze # = NAME I ADDRESSLINEL |
) name 1 18585678 Happy End Searching 5 B1st Strest =]
[fl] ADDRESSLINEL 2 19986982 Smith Bird Watching 4000 Finch Circle
ADDAESSEINEZ s 19974892 wilson Fish Co 20959 Whalers Ave
vy Bl 19986196 James Deli 250 Marinade Blvd
Efl sTaTe s 19978451 All Sushi 399 San Pablo Ave
Bl pHONE 3 19982461 Soft Cables 9988 Main Upper Street
 Fax 7 19984838 Mike Recording Industries 5108 Union Street Road
] Ema s 19965794 Easy Reach Telephones 975 El Camino Circle =
Efll creDiT_LmMm a 19955656 Soft Circle Opticians 95 Eastway Clearview Drive
& [Indexes 10 13985718 Fast Boards 1000 Van Nuys Lane
o=] Foreign Keys 11 19977775 Sams Photo Center 9447 West 13th Street
<[] oiscounT_cone 12 19948494 Computer Support Center 5632 Michigam Ave
- [] MANUFACTURER 13 19971233 Bills Bank and Sons 5960 Inglewood Phkwy
o= [MICRO_MARKET 14 19980198 Pleasan it Enterprises 76342 865th Ave L
o [propuct 15 19960022 Super Computer Products 63 Garcia Rock Way
- [prODUCT_CODE 16 19886542 Florenc Bakery 795 Stone Flour Road
> [PURCHASE_ORDER 17 19977346 Upper Cargo Lift Services 2845 Smith Under Road =
= L1 views 4 il I D
o [Procedures
o B other schemas | | Testresuts |output x|HTTP Server Monitor @
o [EZ] jdbc:derby: fflocalhost: 1527/shop [app on APP] (Build (arquillian) x | java DB Databas: cess x y’suL 1 execution x
o= fb Weti Services Executed successfully in 0.025 s. [&
o [servers Line 1, column 1
o gk Maven Repositories -
| Execution finished after 08.025 s, 0 error(s) occurred

For simplicity we'll use JavaDB (aka Derby) as our RDBMS

Bundled with NetBeans!
- Will run locally

Databases stored as files in ~/.netbeans-derby directory
- Possible to delete database by erasing files

May use any database in project

Using JavaDB

Create/drop databases from inside Netbeans
- For code samples create a database: test
Create/drop tables (all tables should belong to a 'schema” APP)
Connect to database: Mark database > Right Click > Connect
Inspect table data: Mark table > Right click > View Data
CRUD operations on table data from inside NetBeans
- NOTE: Must commit to make persistent, click small button in table
heading
Run queries from inside Netbeans
Sample database supplied, good for testing queries

http://db.apache.org/derby/manuals/index.html
https://en.wikipedia.org/wiki/Relational_database_management_system

