
CHALMERS/GU
DIT

Web applications
Joachim von Hacht

Project PM DAT076/DIT126 2014

General

The workshops have been designed to reduce problems and smoothening the
learning curve. Now you are on your own. Anything can happen!

Extremely important

• Start out with a simple (but extensible) design (you should have a model
before starting out. Start with model early in course).

• Apply an iterative/modular work process to add use cases.

• Refactor! Test! Will save time later on!

Project goal

Three di�erent approaches to web applications have been presented in a rather
basic fashion (and also how to handle persistence). There are much more to
say about any of the approaches. During the project the goal is to deepen
your understanding of one of the approaches. You should select one of the
approaches for your project (request-, service- or component-based approach).
If needed you may incorporate other techniques (like client-server or other). Any
approach must include persistence handling.

Version handling

Git is the only accepted (and mandatory) version handling for the project.

Project groups

You should form a group with 4 members.

• Name the group and send name and members (pnumb and email to all,
possibly phone to someone) and a link to your Git repository to course
responsible (we appreciate Git repos without login). Don't use strange

aliases for names. It must be possible to identify the members (or send a
translation table or create a mailmap).

• As a con�rmation you will get a group number in return. Use it in any
contacts with us.

1 Produced with Lyx, the open source wordprocessor

CHALMERS/GU
DIT

Web applications
Joachim von Hacht

Reporting

Reporting consist of two parts;

• The group makes a demonstration of the application.

• The cloning of the project from the Git repo (we do). Everything in project

must be in repo at deadline (branch master).

Demonstration

You must do a public demonstration of your project. The demo includes running
of the application and a short technical �walk-through� (slides, use the docu-
mentation, see below, as a basis, interesting code snippets OK). It's the groups

responsibility to fully demonstrate the functionality of the application during the

demo. We will not be able to run it later. Approx. time 10-15 min.

• Right before the presentation you should handle in the self-evaluation. See
Course pages > Project.

• Right before the presentation you should handle in a list of working use
cases (for us to tick o�).

Cloning of project

We must be able to downloaded all sources and documentation from your Git
repository. Again: You must supply us with location and rights. We appreciate
repos without login.
It's the groups responsibility to make it possible to grade the sources in about

2 hours. The following is very important:

• Clean the project! Unused things makes us confused and will waste time!

• The documentation gives us a possibility to speed up. Bad documenta-
tion can impact the grading simple because the time will run out. Keep
documentation short and focused. The documentation should contain the
following (the format should be: pure text or pdf (UML, pictures, any
open format), no Javadoc).

� Group name.

� Group members (incl. pnumb and mail).

� General overview over the system.

∗ What is this (a game, an o�ce application, a shop, ...)? In which
area is the system supposed to be used. What is it supposed to
do?

∗ Possible users/roles (admin, others,...) and permissions.

∗ A list of fully functional use cases (short description, one sen-
tence).

2 Produced with Lyx, the open source wordprocessor

CHALMERS/GU
DIT

Web applications
Joachim von Hacht

� Technical design of the system in the following order (UML where
appropriate);

∗ The object oriented model as a UML class diagram.

∗ Selected approach (and possibly any additional).

∗ Physical setup (tiers)

∗ Participating software components (applications, middle ware,
libs, ...) distributed over the tiers. Responsibility for each com-
ponent. Communication between the components.

∗ The modules (packages) of each component and the responsibil-
ity for each module.

∗ A layered view of the application (model, persistence layer, ser-
vice layers, control and view). Where does the components/modules
�t in.

∗ If there's anything we should to know, add a README �le.

Project suggestions

Your own suggestions are welcome, discuss with course responsible. If you have
no idea; here's a couple (use your imagination to �ll in the business processes);

Targeting grade 3: Any kind of web shop or blog.

Targeting grade 4: Contact system for a high school (absence, results...), ap-
plications for parents, teachers, admin, mail, more technologies used.
More realistic, register users, login/out, ... or

Targeting grade 5: Travel Agency, user app. to browse, search, purchase a
travel, admin to update add travels, order handling processing. Integrat-
ing external RESTful services, application contacts payment services, air-
line systems, hotel systems (all simulated) some real time features, fancy
GUI or...

Grading

General overview

• The more realistic the better!

• The more functionality the better.

• Clean design is very important.

• Must be a Maven project.

• A database must be used (any relational accepted).

• ORM must be used.

3 Produced with Lyx, the open source wordprocessor

CHALMERS/GU
DIT

Web applications
Joachim von Hacht

A note on size: Expected code contribution for each member is about 800
SLOC (incl. everything: HTML, CSS, JSP, JavaScript, Java, XML, JSF,
..., and also sensible amount of, comments). If you are below this add a
README to justify/explain!

Details

The following inspection points will contribute to the overall grading of the
project:

• OO Model: There exists an easily identi�able OO model? Complexity,
size and quality of model? Model tested?

• Functionality: Number of working UCs. Average complexity UCs.

• Architecture/Design: The di�erent parts of the application are easily iden-
ti�ed. Each part has a well de�ned responsibility. No duplicates of "any-
thing". MVC style (easy to spot what belongs to di�erent parts/layers).
The abstraction layers are easily identi�able. Layers of application sepa-
rated by interfaces (in particular services).

• Clean Persistence layer. Quality of persistence layer implementation.

• Navigation (easy to trace page �ows)? PRG-pattern for writes.

• Validation (simple ... exhaustive, all layers?). Any custom conversion (if
needed).

• If request based: Correct use of Front controller pattern.

• If JSF: Correct usage and scopes for beans (backing, control,. request...)

• If REST: Correct usage of URI mappings/resources.

• GUI general technical level of GUI (graphical design not much considered).
GUI seems to be modular (composing pages).

• Roles (admin, etc) and authorization (simple in-house...advanced using
standard JEE and database or OAuth).

• Resource handling: Well designed systematic (ad hoc ... standard JEE).
App using i18n?

• Testing: Testing code separated from application. Back-end (services)
are tested? Quality of back-end test? Front-end is tested? Quality of
front-end test?

• Circular dependencies (use STAN or similar)? Code quality (use Firebugs
or similar)?

4 Produced with Lyx, the open source wordprocessor

CHALMERS/GU
DIT

Web applications
Joachim von Hacht

• Style: Development organization. Easy to locate anything (separation
of Java, JS, test, CSS, HTML, etc.). Java packages, hierarchy, naming.
Java code style, naming. Java script style, naming (simple functions ...
pseudo classical, unobtrusive). Other code style (HTML, CSS, ...). Other
(README �les, ...)

• Documentation: Code seems to be self documenting? Any �le has a short
comment (i.e. what is this?). If class �le, comment says: �Responsibility,
used by ..., uses ...�, tricky passages (unclear methods) commented (but
NO other). Good README �les used?

5 Produced with Lyx, the open source wordprocessor

