
Object Relational Mapping
and JPA Intro

JPA Slides #1

Content
- Persistence
- Object relational mapping (ORM)
- Object relational mismatch
- Java Persistence API
- JPA Config files
- JavaDB (Derby)

Persistence

Persistent object: Object that outlives the execution of the program
- Have to store for later retrieval (next execution)

Many persistence mechanisms
- Flat files
- Serialization (binary)
- XML/JSON (text)
- Different types of databases …
- … we will only use a relational database

Object Relational Mismatch

Relational databases and object orientation doesn't fit!
- Object orientation: Objects
- Relational databases: Sets of tuples

Major clash, the OO-relational mismatch
- Relational databases won't change, mathematical foundations...
- Unsolved problem, …

Some points
- Identity? Equality?
- Associations? Relationships? Multiplicity!
- Inheritance?
- Generics?
- Object graphs! Lazy fetching? Lazy object creation?
- Caching? Concurrency? Transactions?...
- Ad hoc searching

- Possibly don't need objects (ex. statistics)
- Should database or application do the work?

- Databases very efficient at searching/sorting, etc … we prefer!

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

Handling the Mismatch

Middleware

At least three different options

Option 1
- Surrender : I.e. don't use OO
- Just use primitive types, String, int, …
- Good for massive reads

- Example: Product Catalog to web
- Fastest possible solution
- Not a solution for complex cases

- Many cases seems simple at start, then complexity creeps up …!

Option 2
- Try to bridge the mismatch
- Map between objects and tuples, object relational mapping, ORM
- No general best strategy

- Must know how database in going to be used
- Mostly reads? Mostly writes?

- Different strategies
- Very complex task to implement (we don’t)

- We use some middleware (glue layer)

Option 3
- Your data in not “relational” use some other persistence approach
- NoSQL …

http://www.agiledata.org/essays/mappingObjects.html
http://www.agiledata.org/essays/mappingObjects.html
http://www.ignoredbydinosaurs.com/2013/05/explaining-non-relational-databases-my-mom

Java Persistence API

Java APIs for persistence
- Java DataBase Connectivity, JDBC

- Low level API, no ORM (not used by us)
- Using embedded SQL strings as parameters
- JEE spec. makes JDBC mandatory

- Java Data Objects, JDO
- Very (too?) general, relational database, object database , ...
- Not used in course, possible fading away…?

- Java Persistence API, JPA 2.x
- Supports relational databases and NoSQL
- This will be our middleware (glue application and database)
- “The Java Persistence API (JPA) provides Java developers with an

object/relational mapping facility for managing relational data in Java
applications.”

- Possible to use JPA in JEE and JSE environments (= JSE, Tomcat or
JUnit)

- JSE Environment
- Have to supply many dependencies
- Have to handle a lot in application (more to code)

- JEE environment, GlassFish, …
- Fewer dependencies
- Container will handle a lot. We use!

- Some Java Persistence API areas:
- Object/relational mapping
- The Java Persistence API, to handle persistent objects

https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Data_Objects
https://en.wikipedia.org/wiki/Java_Data_Objects
https://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html
https://en.wikipedia.org/wiki/NoSQL

- The Query language, to query database in an OO fashion
- The Java Persistence Criteria API, same as above but typesafe

JPA and JDBC

JPA

JPA built on top of JDBC
- We'll need a JDBC Driver (database specific middleware)
- Possibly dependencies in pom (Eclipselink)
- Handled by NetBeans

https://en.wikipedia.org/wiki/JDBC_driver
http://www.eclipse.org/eclipselink/

JPA Config Files

There will be about 4 config files involved
- Mostly generated by NetBeans, possibly some tweaking
- src/main/setup/glassfish-resources.xml,

- Technical data for the database, location, JDBC driver and more (server
specific).

- src/main/resources/META-INF/persistence.xml
- Containing persistence units (PU)

- What classes to persist and more
- Server independent, application specific

- src/test/resources/test-persistence.xml
- Same as persistence.xml but for testing

- src/test/resources/arquillian.xml
- Config for embedded EJB container for testing, more later ...

JavaDB (Derby)

For simplicity we’ll use JavaDB (aka Derby) as our RDBMS
- Bundled with NetBeans!

- Will run locally
- Databases stored as files in ~/.netbeans-derby directory

- Possible to delete database by erasing files
- May use any database in project

Using JavaDB
- Create/drop databases from inside Netbeans

- For code samples create a database: test
- Create/drop tables (all tables should belong to a "schema" APP)
- Connect to database: Mark database > Right Click > Connect
- Inspect table data: Mark table > Right click > View Data
- CRUD operations on table data from inside NetBeans

- NOTE: Must commit to make persistent, click small button in table
heading

- Run queries from inside Netbeans
- Sample database supplied, good for testing queries

http://db.apache.org/derby/manuals/index.html
https://en.wikipedia.org/wiki/Relational_database_management_system

