
Crash Course Relational
Databases

hajo@chalmers.se

A Scenario...

Assume you're the manager...

Managing consults and projects and...

There are no computers...!

Many consults, many projects...(who's working where and
when?)

How would you handle it?...

Using a Table

 Probably using some kind of table

 Hmm, ...this will cause problems (anomalies)....!

Consult Phone Project Account

Sven 070712345 Nightmare 09-34245-12

Olle ... Kamikaze ...

Fia ... NoSurvivors ...

Anomalies

Problems
● If Sven will work on 2 projects → another row with much

common data (duplicate data)
● If so, if Sven moves, have to update many rows (possible

inconsistency)
● If only one consult on a project , and consult quits, where to

put the project? Half row empty...
● Add a new project. Where to put it if we don't know who will

work on it
● … have duplicated data (bad as we know)

Think OO: We mixed two objects (bad analysis)!

Solving Anomalies

Better to use one table for consults and one for projects

Data in tables independent (many anomalies solved)

But how to know which consult on which project??

Consult Phone ...
Sven 070712345 ...
Olle
Fia

Project Account
Nighmare 09-34245-12

Kamikaze

NoSurvivors

Relationships

To connect consults with projects we use unique id's as
references between tables. This is called a relationship

Sven and Olle works on Nightmare, Fia on NoSurvivors. No
one is assigned to Kamikaze

Id Consult Phone ... ProjId
1 Sven 070712345 ... 1

2 Olle 1

3 Fia 3

Id Project Account
1 Nighmare 09-34245-12
2 Kamikaze ...

3 NoSurvivors ...

Primary and Foreign Key

The id's used to connect tables are known as keys

Id Consult Phone ... ProjId
1 Sven 070712345 ... 1
2 Olle 1
3 Fia 3

Primary keys (for Consults).
Must be unique for every
row

Foreign keys (primary key
for projects (or other table),
possible non unique)

This is a join column (joining
two tables)

Relationship Multiplicity

Depending on the rules for the company we possibly have different
multiplicity of relationships
● One consult always works on one project (1:1, one to one)
● One consult possible works on many projects (1:N or 1:*, one to

many)
● Many consults possible work on same project (N:1 or *:1, many to

one)
● There can be many consults working on many projects (M:N, *:*,

many to many)

We must be able to handle all these
● We have seen N:1 so far
● 1:1, join column id's must be unique
● 1:N, put join column in project table
● But M:N...???

Many to Many Relationships
Id Consult Phone ...
1 Sven 070712345 ...
2 Olle
3 Fia

Id Project Account
1 Nighmare 09-34245-12
2 Kamikaze ...

3 NoSurvivors ...

ConsultId ProjectId
1 2

1 3

2 3

3 1

Many to
many
relationships
need an extra
table, a
jointable.
Jointable has
joincolumns
(only)

● A consult, Sven, works on many
projects (2,3)

● Many consults (1,2) works on one
project, NoSurvivors

Summary Multiplicity

Assume tables A and B

Consider the primary keys for A (a column)
● If all keys appears in one and only one location (row) in B (as

foreign key), then we have 1:1
● If any key appears in more locations (rows) we have a 1:N

Consider primary key for B
● Same as above

If any of A's key appears in multiple times in B and any
of B's key appears multiple times in A, we have M:N

The Relational Model

What we accomplished so far can be formalized to "the relational
model"

 "The relational model for database management is a database
 model based on first-order predicate logic, first formulated
 and proposed in 1969 by E.F. Codd."

● Tables (relations) are in fact sets of tuples (rows)
● Tuples have attributes (columns) with primitive values (no objects

or lists,...)...
● ..or possible NULL (unknown or missing value)
● Attribute values have types (similar to Java, String = VARCHAR

(20))
● Note: No ordering of rows (a set is unordered)

Relational Database Management
Systems, RDBMS
The software implementation of the relational model will show
up as a RDBMS
● Handling collections of tables and much more
● Normally run as a database server (on a dedicated

machines)
● For a collection of tables we just say a database
● Operations to create/delete(drop) database, create/delete

(drop) tables, create/read/update/delete rows (CRUD), and
more...

● Advanced and very efficient methods for searching

JavaDB (Derby)

We'll use the Derby RDBMS in this course
● Bundled with NetBeans, see Services tab
● Will run on same machine

Possible to create/drop a database from inside Netbeans

When database created possible to create/drop tables (all tables
should belong to a "schema" APP (similar to Java package))

Possible to do the CRUD (row) operation directly in NetBeans

All above also possible from within a Java program

Databases stored as files in ~/.netbeans-derby directory
● Possible to delete database by erasing files

The Sample Database

Derby has a sample
database (kind of
ordering system)

Primary key

Tables

Structured Query Language, SQL

Assume we have created the database, the tables and the
relationships

To manage the data in the database we use SQL
● A declarative language (compare XSLT)
● Written as (looooooong) strings, verbose...
● Standardization efforts but many different dialects
● Normally not possible to move SQL "programs" from one

database to another (from different vendors)
● Possible to execute SQL from inside Java programs (as

embedded SQL strings in Java)

SQL Elements

■ Clauses, part of statements and queries

■ Expressions, represents scalar values or tables

■ Predicates, boolean values

■ Statements, a write operation will alter data. Ending in ';' (and more...)

■ Queries, a read statement This is the most important element of SQL.

■ White space ignored in SQL statements and queries.

■ Strings uses ' (single quote)

■ Keywords normally case insensitive, table and column names varies(!?)

■ Comments normally /* */

Create

 /* Insert a row into table PRODUCT_CODE */

 INSERT INTO
 PRODUCT_CODE (PROD_CODE, DISCOUNT_CODE, DESCRIPTION)
 VALUES ('XX', 'M', 'Junk');

Tuple must "match", same components, types must match
(here strings), ... if not exception!

Note: We always use a single numeric value as primary key.
This makes it possible for Derby to automatically assign each
row an primary key (ascending sequence). Never specify
primary key when inserting

Update and Delete

 /* Update PROD_CODE from XX to YY */
 UPDATE PRODUCT_CODE
 SET PROD_CODE = 'YY'
 WHERE PROD_CODE = 'XX';

 /* Deleting row with prod code YY */
 DELETE FROM
 PRODUCT_CODE
 WHERE
 PROD_CODE = 'YY';

Queries (Reads)

We say query. We query the database to collect information

Query single table
 /* Everything from product code table */
 select * from PRODUCT_CODE;

 /* All discount codes (a column) */
 select DISCOUNT_CODE from PRODUCT_CODE;

 /* Product codes for software (0-many rows)*/
 select * from PRODUCT_CODE where DESCRIPTION = 'Software'

 /* All orders delivered by Poney Express with quantity < 10 */
 select * from PURCHASE_ORDER where QUANTITY < 20 AND
 FREIGHT_COMPANY = 'Poney Express'

Join

Id Consult Phone ... ProjId

1 Sven 070712345 ... 1
2 Olle 1
3 Fia 3

Id Project Account

1 Nighmare 09-34245-12

2 Kamikaze ...

3 NoSurvivors ...

SELECT Id, Consult, Phone, Account
FROM Consult INNER JOIN Project
ON Consult.ProjId = Project.id;

Id Consult Phone Account

1 Sven 070712345 09-34245-12
2 Olle ... 09-34245-12

To make it possible to select data from more
tables we join the tables

Join result. Matching
(by id) rows from both
tables. Many types of
joins, here INNER

Join and NULL's

If a Consult has no project a NULL in ProjectId column.

If joining tables NULL values will never match i.e. row not in result

Possible to specify that all rows, even if null, (from left or right
table) should be included in join result using LEFT OUTER JOIN
or RIGHT OUTER JOIN
● INNER JOIN will not include consults with no projects, LEFT

OUTER will (ProjectId value is NULL)

Orderings

● Possible to order result (sorting done by database, very
efficient)

 SELECT column_name(s)
 FROM table_name
 ORDER BY column_name(s) ASC|DESC

Aggregate Functions

Functions for simplify server side aggregate calculation.
■ Average()

■ Count()

■ Maximum()

■ Median()

■ Minimum()

■ Mode()

■ Sum()

■ ...

 SELECT avg(QUANTITY) from PURCHASE_ORDER;

Returns single value (NULL's eliminated)

http://en.wikipedia.org/wiki/Average
http://en.wikipedia.org/wiki/Average
http://en.wikipedia.org/wiki/Counting
http://en.wikipedia.org/wiki/Counting
http://en.wikipedia.org/wiki/Maximum
http://en.wikipedia.org/wiki/Maximum
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Minimum
http://en.wikipedia.org/wiki/Minimum
http://en.wikipedia.org/wiki/Mode_(statistics)
http://en.wikipedia.org/wiki/Mode_(statistics)
http://en.wikipedia.org/wiki/Sum
http://en.wikipedia.org/wiki/Sum

Constraints

RDBMS will (can) enforce many constraints (if fail, exception!)

Default constraints
● Primary key must be unique and not NULL
● Can't add non existing foreign key
● Can't delete a consult if he/she has a project. Must delete

project first. Possible: Cascading deletes

Specifying constraints
● Specifying “Unique” on attribute prevents duplicate values

in column, necessary for 1:1 relationships
● Specifying attribute must not be NULL, RDBMS will check!

Transactions

Assume transferring $1000 from one account to another

A two step operation in the computer world
● Withdraw $1000 from account A
● Insert $1000 on account B

But what if a crash in middle!!???
● Money lost...!!

Solution: Transactions

ACID Property for Transaction

Atomicity
● A transaction must be seen as a single atomic operation

Consistency
● A transaction must not violated any constraints, keys, etc.

Isolation
● Other transactions should have limited access to

data involved in the transaction

Durability
● When transaction finish data shall be permanent

Commit and Rollback

Inside the transaction data isn't really written to store

Final write operation at transaction end = database commit
● After commit data is persistent

If transaction fails
● Previous state is restored (i.e. nothing changed) = rollback

In programming we sometimes have to handle transactions
(write code to)
● Java API
● If transaction failed (exception) do a rollback

Help

W3Schools http://www.w3schools.com/sql/default.asp

http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp

