
Java Server Pages
BWA Slides #4

Content
- Dynamic content
- Platforms
- Stacks
- Echo systems
- JEE concepts similar in PHP etc.

HTML is Static

Major problem with HTML
- No way to put dynamic data in pages using pure HTML!

Dynamic Content Solutions

<!DOCTYPE html>
<html>

<body>
<h1>PHP</h1>
<?php
$result = ...;
echo $result;
?>

</body>
</html>

<!DOCTYPE html>
<html>

<body>
<h1>ASP.NET</h1>

 <p>
The time is @DateTime.Now

</p>
</body>

</html>

PHP ASP.NET

<!DOCTYPE html>
<html>

<body>
 <h1>JEE</h1>

<p>
${contact.name}

</p>
</body>

</html>

JEE

Similar approach for many platforms (if using a request based approach ...)
- Let page composer write HTML with some added tags or expressions
- Server intercept page at request and replace expression with values

(toString)
- Server sends processed page to client

JEE View Technologies

Application

NOTE: Servlet is not a view technology any more

Java Server Pages
<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 …

</head>
 <body>
 <h1>Detail</h1>
 <table>
 <tr>
 <td>
 ${contact.id}
 </td>
 <td>
 ${contact.name}
 </td>
 </tr>
 </table>
 <button onclick="window.history.back();">Back</button>
 </body>
</html>

Could use a Servlets for dynamic content but bad …
- … mixing Java and HTML
- Tedious!
- Need something else (simpler)

JSP is a JEE display technology for dynamic HTML pages.
- Simple for non-programmers to write a “page”
- Page consists of a <%@page..> directive, ordinary HTML and expressions from

the Expression Language
- Possibly some special JSP tags like <jsp:include> (not shown, more later)
- Two different JSP syntaxes, we use Standard syntax (non-XML)
- Under the hood: A JSP is a Servlet, ... but written in a “tag language”!

Lifecycle
- At first request translated to servlet and compiled (slow first request)
- Then as Servlet

Possible to write Java-code in pages (scriptlets), we never do!
Separations of concerns (unmaintainable)

In NetBeans JSPs are located under the "Web Pages" folder (Maven:
src/main/webapp)

- Best practices: Put in src/main/webapp/WEB-INF/jsp directory i..e.
application private, can’t access using browser address field (that is: must go
through application, we have control)

https://en.wikipedia.org/wiki/JavaServer_Pages
https://en.wikipedia.org/wiki/JavaServer_Pages

Expression Language
Retrieval
${person.name}
 ________/_____/
 | |
Key for object attribute (will call getName on some object)

String concatenation
"/shop/products/list/${CURRENT_PAGE}"

Arithmetic
"${CURRENT_PAGE lt COUNT / PAGE_SIZE - 1}"

The EL allows page authors to write simple expressions to access Java objects and
data from Java objects

- Used in JSP pages and elsewhere, more later …
- Also possible: String manipulation and arithmetic (and more…)
- In EL anything will end up as an expression (a value, … converted to a String)

 Immediate evaluation for EL-expressions
- Expression immediately evaluated and result put into page
- Immediate syntax: ${ … expression … }
- Immediate syntax is read only (good, this is the view part)

http://www.tutorialspoint.com/jsp/jsp_expression_language.htm

Implicit Objects
<%@page contentType="text/html"
pageEncoding="UTF-8"%>
!DOCTYPE html>
<html>

</html>

${param}

${requestScope}

${applicationScope}

${sessionScope}

${pageScope}

 “Implicit objects” are Java objects accessible in JSP page using the expression
language

Some implicit objects (there are more)
- pageScope - a Map that maps page-scoped attribute names to their values
- requestScope - a Map that maps request-scoped attribute names to their

values
- sessionScope - a Map that maps session-scoped attribute names to their

values
- applicationScope - a Map that maps application-scoped attribute names to

their values
- param - a Map that maps parameter names to a single String parameter

value (obtained by calling ServletRequest.getParameter(String name))
- pageContext, entry to request, response (i.e. the scoped objects used in

servlets) and more …
- ${pageContext.request.contexPath}, will return root of application
- ... useful when creating links (will make it possible to relocate

application)

Example:
- Use request.setAttribute(“key”, ...) in Servlet,
- accessing in JSP as ${requestScope.key…}

- Or ${requestScope[key]…}

https://docs.oracle.com/cd/E19316-01/819-3669/bnaij/index.html

Request

Full Request Cycle

Submit

JSP in page

Servlet

${contact.name}

JSP out page

request
params
id:111
name:arne

id : 111
name: aaa

“contact”

Contact object

1

2

3 4

5

6111

arne

Full request cycle example
1. Enter some data into a form in JSP. Post to Servlet
2. Servlet retrieve request parameters and …
3. … creates Contact object, from parameters (normally read/write from/to

database)
4. Servlet puts Contact object into request (scoped object in Servlet) using key

“contact”, (request.setAttribute(“contact”, object))
5. Servlet forwards request to JSP page (this also sends the request along)

- Or redirects, but then request won't survive … problems ...
6. Page retrieve data using EL

NOTE: Page implicit objects normally automagically searched for key/values (i.e.
don’t need to specify implicit object, just specify key).

Java Standard Template Library
<%@page contentType="text/html" pageEncoding="UTF-8"%>
<%@taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<!DOCTYPE html>
<html>
 <head>... </head>
 <body>
 <!-- Generating a list -->
 <table>
 <c:forEach var="contact" items="${contacts}">
 <tr>
 <td>${contact.id} </td>
 <td>${contact.name}</td>
 <td> … </td>
 </tr>
 </c:forEach>
 </table>
 </body>
</html>

Need statements in pages: assignment, selection, iteration
- Typically a loop to create a table or …
- … a selection to set button/links disables or not
- Use: Of course no application logic, just display logic

Solution: JSTL tags
- Used in conjunction with EL
- Must add directive (<%@taglib,,,>) to page to be able to use JSTL
- We only need the <c: … > tags
- May need Maven dependency on JSTL

http://www.tutorialspoint.com/jsp/jsp_standard_tag_library.htm

Master Detail Interface
Master

Detail <a href="${pageContext.request.contextPath}/
 products/edit/${i.id}">Edit

<button id="save" type="submit">Save</button>
<button onclick="window.history.back();">
Cancel
</button>

Very common GUI design
- Master consisting of a list.
- When editing we would like to display the details of a single row, open new

page (or popup)

HTML is Not Modular

To get a common layout for a site we have common parts for all pages (footer,
header)

- To be able to refactor out common parts we need to be able to compose
pages

- No way in pure HTML

Composing Pages
Template page (single JSP)
<jsp:include page="${param.partial}.jsp" />

Partials (many JSPs)
<%@page contentType="text/html" pageEncoding="UTF-8"%>
<section id="pageSection">
 … content here ...
</section>

Use in Servlet
case “edit”
req.getRequestDispatcher(“template.jsp?partial=edit”)
 .forward(req, resp);

Modular JSP Pages consist of composing:
- A single template page for the overall look (common header, menu, footer,

etc) using <jsp:include> tag for varying content
- Using filenames of the varying content (partials)

- Many “partial” JSP-pages containing specific content to display in template
(varying part as an HTML <section>),

A servlet informing the template which content to put in the varying part (depending
on incoming request)

JSP, CSS and JavaScript

<%@page contentType="text/html" pageEncoding="UTF-8"%>
...
<head>
<c:set var="res" value="${pageContext.request.contextPath}/resources"/>

<link rel="stylesheet" type="${res}/css" href="normalize.css" />
<link rel="stylesheet" type="${res}/css" href="bootstrap.css" />
<script type="text/javascript" src="${res}/js/jquery-1.11.3.min.js"></script>
</head>

<body>
...
</body>
...

No problems, just as HTML
- All CSS, JS , images in top level resource folder

URIs In JSPs
Browser URI
http://localhost:8084/shop/

Relative references inside application
1. shop/products/list/0
2. /shop/products/list/0 (hardcoded)
3. ${pageContext.request.contextPath}/products/list/0 (dynamic)

Resolving
1. http://localhost:8084/shop/shop/products/list/0 (bad)
2. http://localhost:8084/shop/products/list/0
3. http://localhost:8084/shop/products/list/0

Relative references makes it easy to move resources …
- But inside an application very confusing

If using relative references (without leading /) resolved reference depends on
previous URI

- URI in page appended to the URI we used to access the resource…
- Simpler to use /, … whatever URI used will be resolved from server root, but

hard to move application
- Best is resolving root dynamically: using request.getContextPath()

HTTP Monitor

To trace the request cycle try HTTP Monitor
- Nice tool in NetBeans to check incoming calls to container
- Select Services > Servers > Tomcat (or other) > Properties > Check Enable

HttpMonitor. Restart server

