
Component Based Approach
Wrap Up
JSF Slides #4

Content
- JSF and AJAX
- Fileupload
- HTML5 and JSF
- Application Layers
- MAter detail interface
- Clean URLs
- Pagination
- JEE Authorization

AJAX Behaviour
The AJAX element
<h:form>

<h:inputText value="#{ajaxbean.bound}" />
<h:commandButton … >

 <f:ajax render="output" execute="@form" />
</h:commandButton>
<h:outputText id="output" value="#{ajaxbean.randnumb}" />

</h:form>

 JSF is default “full page load”
- Suitable for many application
- Need for AJAX ...?? If so …

- Many component frameworks have components with default AJAX
behaviour, more later …

- Worst case: Handle it self, using <f:ajax>-element

Tech talk
- The <f:ajax> requires jsf.js (library supplied by JSF) file

- Must have <h:head> element to trigger download
- <f:ajax> inside <h:form>
- Enclos or nest element(s) with <f:ajax> to give AJAX behaviour
- Uses id-attribute of elements to specify input and output elements
- Attributes

- render: The elements to redisplay on the page.. Often h:outputText
- The target of the render must be inside the same h:form as <f:

ajax>
- execute: The element(s) to send to server to process.

- Generally input elements such as h:inputText or h:
selectOneMenu.

- event: The DOM event to respond to (e.g., keyup, blur)
- … and more

There are 4 special values for attributes execute and render
- @this. The element enclosing f:ajax.
- @form. The h:form enclosing f:ajax.

http://www.tutorialspoint.com/jsf/jsf_ajax.htm

- Very convenient if you have multiple fields to send
- @none. Nothing sent.

- Useful if the element you render changes values each time you
evaluate it.

- @all. All JSF UI elements on page.

Fileupload
Using inputFile

<h:form … enctype="multipart/form-data">
 <h:inputFile … value="#{uploadbean.file}"
 validator="#{uploadbean.validateFile}"/>
</h:form>

There’s an element for fileupload

HTML5 and JSF
Pass through elements
<input type="email" placeholder="Enter email"
 jsf:value="#{htmlbean.email}" required="required"/>

<label jsf:value="#{htmlbean.email}" />

Pass through attributes
<h:inputText id="email" value="#{htmlbean.email}"
 p:type="email" p:placeholder="Enter email"/>

Possible to let JSP and HTML work in conjunction (HTML5 friendly JSF)

Pass-through elements
- In HTML5 (i.e. no JSF-elements) use JSF attributes (and EL expressions)
- Make it possible to build the view with HTML elements that can access

components and beans
- Will convert HTML to JSF
- Mapping between HTML-elements and JSF in TagDecorator

- To make an element a pass-through element, at least one of its attributes
must be in the namespace http://xmlns.jcp.org/jsf.

Pass-through attributes
- In JSF (using JSF-elements), use HTML5 attributes
- Attributes passed through JSF directly to render phase
- Prefix attributes with namespace http://xmlns.jcp.org/jsf/passthrough

http://docs.oracle.com/javaee/7/api/javax/faces/view/facelets/TagDecorator.html

Application Layers

PrimeFaces ...

JSF

CDI/Bean Validation

 OO Model

JPA (database)

More to
come

User Interface

Application Layer

Domain Layer

Infrastructure (Services)

Domain driven
application layering

Master Detail Interface

<h:link value="Edit" outcome="personDetail">
<f:param name="id" value="#{person.id}" />
<f:param name="fname" value="#{person.fname}" />
<f:param name="age" value="#{person.age}" />

</h:link>

<f:metadata>
<f:viewParam name="id" value="#{personDetail.id}" />
<f:viewParam name="fname" value="#{personDetail.fname}"
/>
<f:viewParam name="age" value="#{personDetail.age}" />

</f:metadata>

Masterpage

Detailpage

Data from master page sent to page beans for detail page

Clean URLs and Pagination

No standard (built in solutions for)
- Clean URls-

- Third party solution from OCPsoft
- Pagination

- Do it yourself or find a component

http://www.ocpsoft.org/prettyfaces/
http://www.ocpsoft.org/prettyfaces/
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/JSFTablePagination/JSFTablePagination.html
http://www.primefaces.org/showcase/ui/data/datatable/paginator.xhtml

JEE Authorization

JEE supports
- Basic authentication
- Form-based authentication
- .. and more

Now we’ll use Form-Based (preferred way to do it)

Standard JEE authorization technique, using realms
- A realm is a security policy domain defined for a web or application server. A

realm contains a collection of users, who may or may not be assigned to a
group

Types of realms (supported by GlassFish and Tomcat)
- file, Stores user information in a file. This is the default realm when you first

install the GlassFish Server
- ldap, Stores user information in an LDAP directory
- jdbc, Stores user information in a database
- For now we use the file realm with GlassFish

- This is server dependent (Tomcat different)
- Database backed sample later (better)

Terms
- A role is an abstract name for the permission to access a particular set of

resources in an application.
- Web resource collection

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Form-based_authentication
https://en.wikipedia.org/wiki/Form-based_authentication

- A list of URL patterns (the part of a URL after the hostname and port
you want to constrain) and HTTP operations (the methods within the
files that match the URL pattern you want to constrain) that describe a
set of resources to be protected.

- Authorization constraint
- Specifies whether authentication is to be used and names the roles

authorized to perform the constrained requests.
- User data constraint

- Specifies how data is protected when transported between a client
and a server.

Steps
- Create users and groups in GlassFish file realm (using Admin console) …
- Create roles in application (defined in glassfish-web.xml)
- Map roles to users and groups in web.xml
- Specify security constraints in web.xml

