
Web applications Joachim von Hacht

Workshop 1: A Request Based Approach, the
Java Servlet API

Objectives

The goal for this workshop is to expose a given OO-model on the web (a web shop).
We'll create a request based application to interact with a part of the model (the Pro-
ductCatalogue). You need the following tools and skills;

• Environment: NetBeans IDE (including Maven, Tomcat Server) or similar.

• Basic XML, HTML and CSS and Bootstrap.

• JEE Web applications and the Servlet API (Servlets, Java Server Pages (JSP), JSP
Standard Template Library (JSTL).

• The FrontController JEE design pattern.

• The Post-Get-Request (PRG) pattern.

Please: Inspect code samples from the lectures (on course page)! Ev-

erything you need should be there. Will hopefully save you a lot of

time!

Final date : See Course Page

1 The shop model

We will use a basic model of a web shop during the workshops. Below is an UML class
diagram of the model;

1 Produced with Lyx, the open source wordprocessor

Web applications Joachim von Hacht

1. Download the model from course page > Workshops. Unzip and open project in
NetBeans (it's a Maven Java standalone application).

2. Inspect project. Check classes: Shop (note some default data), ProductCatalogue,
OrderBook and CustomerRegistry.

3. Switch of testing for ordinary builds: Tools > Options > Java > Maven, check
�Skip Tests for any....�

4. Build the project. Will install the model into local Maven repo (~/.m2 directory)
as shop-1.0-SNAPSHOT.jar. Try to �nd it. When installed in repo it's possible for
other applications to add a Maven-dependency on the model (we will use the same
model in all workshops).

5. There are a few tests. Run the tests.

6. Inspect shop-1.0-SNAPSHOT.jar in the Files view (tab). Important to check that
everything really is included in the jar (more important later).

Figure 1: Application main page (index.jspx)

2 Design

Now we will wrap the model in a request based web application. The task for you is
to implement the Products part of the application (CRUD operations for the Product
catalogue).

Note The �nal project development structure is in Appendix

Figure below shows the overall design. Assume the arrow represents the path of the
request object:

2 Produced with Lyx, the open source wordprocessor

Web applications Joachim von Hacht

• If authentication is implemented, see below, the request hits the AuthFilter (not
present right now).

• Depending on URL, request enters Shop- or Productservlet. ProductServlet inter-
acts with ShopModel to read or write product data then navigates. ShopServlet
only navigates between di�erent parts of the application (Products, Orders, ...).
Any data needed in the pages are set in the servlets (using request.setAttribute or
session.setAttribute).

• Servlets forward or redirects to template.jspx which in turn includes needed content
using <jsp:include..>.

• Pages access data set in servlets using EL-expression (like ${...}).

• The Listener is used to put a reference to the Shop model into the ApplicationScope
at application start up (model will exist as long as application runs).

The graphical design uses the Bootstrap CSS library.

Figure 2: Design for request based approach.

3 Produced with Lyx, the open source wordprocessor

Web applications Joachim von Hacht

3 Preliminaries

1. Download an application skeleton from course page > Workshops. Unzip and
open project in NetBeans (it's a Maven Java Web application). There are possible
warnings or errors, ignore for now.

2. There should be a dependency on the shop model. Inspect pom.xml.

3. Build the project (Maven possibly will download a lot, be patient). Inspect gen-
erated .jar �le in Files view. Now all warnings and errors should be gone, if not
contact assistant.

Note We'll use Java 1.7 (Java 7) for our projects. Mark project, right click >
Properties > Sources (should be Java 1.7) and Compile (Java 1.7 or Java 1.8).

4. Familiarise with the Web application structure.

5. Inspect Services-tab > Servers in NetBeans. You should �nd an Apache Tomcat
server. Right click icon > Properties, inspect.

Note If �Enable HTTP Monitor� is checked it's possible to inspect incoming HTTP
requests in HTTP Server Monitor window (pops up at run). Very useful.

6. Start Tomcat, right click > Start. Use a browser to visit http://localhost:8084
(default for Tomcat admin pages). Stop Tomcat.

Note There are always two administrative applications running in Tomcat, shown
as / and /manager. Don't touch!

7. Mark project > Properties > Run > Select Tomcat (possible already selected).

8. Mark project > Run. Tomcat should start (log windows opens in NetBeans) and
application welcome page (see web.xml) should show up in default browser (adjust
browser Tools > Options > General > Web Browser).

9. Try to access di�erent JSP's using the browser address �eld. Conclusions?

10. Compare browser address �eld with content in �le Web Pages/META-INF/context.xml.
Change path in context.xml and run again. As expected? Reset!

Tip To speed up the deployment of the project, specially when testing small
changes to server side code, use �deploy on save�, NetBeans will compile and
deploy the application on every save (at severe exceptions possible have to
Build/Run again). Recommended!

In an existing application. Mark application, right click > Select Properties
> Run > check Deploy on Save.

Select Properties > Build > Compile > Compile On Save: For both applica-
tion and test...

4 Produced with Lyx, the open source wordprocessor

Web applications Joachim von Hacht

Tip Indexing of local Maven repo is very time consuming. Select Tools > Options
> Java >Maven > Index Update Frequency: Never

Warning Use clean and build generously. NetBeans seems to cache too hard ... i.e.
unclean builds.

11. It's possible to debug a Web application but it's somewhat heavy. Use of Logger
is recommended to trace the execution. Point into some editor window, right click
> Insert code ... > Logger Use like this (in general let NetBeans generate as
much code as possible in particular constructors/setters/getters):

LOG.log(Level.INFO, ".. some message... {0}", somevalue);

4 Implementation

You should only implement the ProductCatalogue functionality

1. Files to work on: the �les in the /WEB-INF/jsp/products folder, the Product-
Servlet. If implementing authorization add a �lter.

2. The �rst goal is to display a web page with a table of products like below. This
page should be reachable from �Products� in the main menu. The table is located
in products.jspx. Start out with a simpli�ed table with no navigation and no links.
Work with the JSP and the ProductServlet. Use JSTL and EL to generate the
table (a loop).

5 Produced with Lyx, the open source wordprocessor

Web applications Joachim von Hacht

3. Add navigation to products.jspx using JSTL <c:if ...> and EL (or other, feel free
to test). Inspect ShopServlet for some ideas.

4. Master detail Implementation

• Add links to to the table pointing at editProduct.jspx and delProduct.jspx.
Use EL to add request parameters for identi�cation of object to edit or delete
(NOTE: Id never changes).

• Add a link to the addProduct.jspx to make it possible to add new products.

• All details pages are composed of a form with a few controls like below.

5 The Post Redirect Get (PRG) Pattern

Check that the PRG pattern is correctly implemented.

6 Authentication and Authorization

(Optional) As a means of auth-entication/orization we'll use a Filter. The general idea
is;

• All requests to URL �/products/*� will hit the �lter.

• Filter checks if there's a user-object in the HttpSession-object (if session exists).

• If so the request is passed through.

• Else there's a forward to some login page. Login (and logout) is handled by an
AuthServlet. If login succeeds the Servlet puts the user-object into the HttpSession.
Else an error message is displayed in the login page.

Create a User, an AuthFilter, an AuthServlet (in package auth) and a public jspx-page
(login.jspx).

6 Produced with Lyx, the open source wordprocessor

Web applications Joachim von Hacht

APPENDIX

Final Project development structure.

7 Produced with Lyx, the open source wordprocessor

