
A Component Based
Approach
JSF Slides #5

Characterization Review

Much more of standard (non-web) OO-programming
- Well known concepts of objects, components and listeners
- High abstraction level avoid accessing HTTP request etc. (but
pops-up...)
- Libraries of GUI components (higher level frameworks)
- Possibly a bit lack of control

Design and MVC

JSF/Facelets/CDI/Bean Validation is not a complete
framework, no default MVC design
- We use no framework
- For now we have to design ourselves, so yet another in house
MVC- solution

Application Layers vs JEE Stack

PrimeFaces ...

JSF

CDI/Bean Validation

 OO Model

JPA (database)

More to
come

User Interface

Application Layer

Domain Layer

Infrastructure (Services)

Domain driven application
layering

JSF Application Design

template.
xhtml

page.xhtml

partials,
template
clients

backing
bean

support
bean

application
bean

Model

backing
bean

Wrap model in
application bean
(possible to inject)

NOTE: We don’t have
any persistence layer
yet (database)

 faces-config.xml,
navigation web.xml beans.xml

Persistence

control
bean

control
bean

View

Control

= read only

The “Master/Detail” Problem

Solved by (similar to request based approach)

<!--In a master table -->
<td>

<h:link value="Edit" outcome="personDetail">
<f:param name="id" value="#{person.id}" />
<f:param name="fname" value="#{person.fname}" />
<f:param name="age" value="#{person.age}" />

</h:link>
</td>

<!-- Detail page -->
<f:metadata>

<f:viewParam name="id" value="#{personDetail.id}" />
<f:viewParam name="fname" value="#{personDetail.fname}" />
<f:viewParam name="age" value="#{personDetail.age}" />

</f:metadata>

Pagination

One possibility for list
- ViewScoped bean holds currentPage, methods prev, next, … call
with AJAX (some method in request cycle, to get new values)

<!-- Current page in personList bean -->
<h:commandButton value="Prev" actionListener="${personList.prev}">
 <f:ajax execute="@form" render="personsPanel" />
</h:commandButton>

<h:commandButton value="Next" actionListener="${personList.next}" >
 <f:ajax execute="@form" render="personsPanel" />
</h:commandButton>

Or SessionScoped bean with non-AJAX calls or higher level
component suites

JSF PRG

PRG pattern
- Use view parameters
- If no data should survive use redirect (see navigation)
- If data should survive use “includeViewParams=true”
- See code samples

https://blogs.oracle.com/enterprisetechtips/entry/post_redirect_get_and_jsf
https://blogs.oracle.com/enterprisetechtips/entry/post_redirect_get_and_jsf

JSF Resources

For CSS, images, JavaScript, ...using the "library" attribute

Example: NetBeans project/Maven
CSS in Web Pages/resources/css, JavaScrip in Web Pages/
resources/js, etc

 <html>
 <h:outputStylesheet library="css" name="styles.css" />
 <h:outputScript library="js" name="utils.js" target="head"/>
 <body>
 <h:graphicImage library="img"
 name="tomato.jpeg" alt="tomato"/>

JSF I18N

Internationalization (i18n) using resource bundles
- msg.properties, msg_de.properties, msg_sv.properties, ...
- Flat text files to Map<String, String>

In faces-config.xml
<resource-bundle>
 <!-- Package and folder hierarchy (must be nested)-->
 <base-name>edu.chl.hajo.i18n.msg</base-name>
 <!-- This is the name used in EL-expressions -->
 <var>msg</var>
</resource-bundle>

In page
 <..."#{msg.lblWelcome}".../>

JSF and Cleans URI's

No standard… as noted before

Have to rely on third party, PrettyFaces, others..

Testing

Beans must run in container, how to test?
- If using constructor or method injection possible to supply
needed objects. Run JUnit test like POJO's
- Better use embedded container (“Arquillian” , see database slides)

Some thought's
- If using CDI as a thin administrative layer between GUI and model,
there should not be much of testing needed
- No application logic in pages, beans

Authentication and Authorization

Standard JEE authorization technique, using realms

A realm is a security policy domain defined for a web or application
server. A realm contains a collection of users, who may or may not
be assigned to a group

Types of realms (supported by GlassFish and Tomcat)
- file, Stores user information in a file. This is the default realm
when you first install the GlassFish Server
- ldap, Stores user information in an LDAP directory
- jdbc, Stores user information in a database
...

http://docs.oracle.com/javaee/7/tutorial/doc/security-intro005.htm

Realms, Users, Groups, and Roles

A realm contains a
collection of users, who
may or may not be
assigned to a group

A role is an abstract name
for the permission to
access a particular set of
resources in an
application.

File realm

For now we use the file realm with GlassFish
- This is server dependent (Tomcat different)
- Database backed sample later (better)

Steps
-Create users and groups in GlassFish file realm (using Admin
console) …
-Create roles in application (defined in glassfish-web.xml)
-Map roles to users and groups (also glassfish-web.xml)
-Specify security constraints in web.xml

Web Security Constraints

Web resource collection: A list of URL patterns (the part of a URL after the
hostname and port you want to constrain) and HTTP operations (the
methods within the files that match the URL pattern you want to constrain)
that describe a set of resources to be protected.

Authorization constraint: Specifies whether authentication is to be used and
names the roles authorized to perform the constrained requests.

User data constraint: Specifies how data is protected when transported
between a client and a server.

Web Security Constraints
Example
// web.xml
<security-constraint>
 <web-resource-collection>
 <web-resource-name>wholesale</web-resource-name>
 <url-pattern>/acme/wholesale/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>PARTNER</role-name> <!-- Role name in application -->
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

CONFIDENTIAL = GlassFish will use SSL (alt. NONE)

Web Authorization Mechanism

JEE supports

-Basic authentication (demo at service based approach)
-Form-based authentication (at component based approach)
-Digest authentication
-Client authentication
-Mutual authentication

Now we’ll use Form-Based (preferred way to so it)

Programmatic Login

Use a <h:form> for login and password
- Navigation see code samples

// In some backing bean connected to login page
// Using default mechanism and HTTPServletRequest (request)
try {

request.login(id, password);
User user = userService.find(id, password);
externalContext.getSessionMap().put("user", user);
return "success";

} catch (ServletException e) {
 FacesContext.getCurrentInstance().addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_WARN,
 "Login Failed", null));
 externalContext.getFlash().setKeepMessages(true);
}
return "fail";

