
JavaScript
WS Slides #2

Content
- Specification
- JavaScript
- Module Pattern
- Pseudo-classical style
- Javascript APIs

JavaScript Specification

JavaScript is an implementation of the ECMAScript Language Specification
- We use ECMA 262 ed. 5.1 (ed 6 upcomming … but when…?)
- Hard reading …
- Original author Brendan Eich

http://www.ecma-international.org/ecma-262/5.1/
https://en.wikipedia.org/wiki/Brendan_Eich

JavaScript Characteristics
- Interpreted scripting language
- Run in host environment (browser or other)
- C-family syntax
- Non-statically typed
- References
- Lots of implicit type conversions (coercion)
- Prototype based (object based, no classes)
- First class functions
- Closures
- Single threaded
- Garbage collected

=

JavaScript is a prototype-based scripting language with dynamic typing and first-
class functions. This mix of features makes it a multi-paradigm language, supporting
object-oriented, imperative, and functional programming styles.

Despite some naming, syntactic, and standard library similarities, JavaScript and
Java are otherwise unrelated and have very different semantics.

- Java and JavaScript are as similar as Car and Carpet or …
- ...Ham and hamster ...

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://en.wikipedia.org/wiki/Prototype-based_programming
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Dynamic_language
https://en.wikipedia.org/wiki/First-class_functions
https://en.wikipedia.org/wiki/First-class_functions
https://en.wikipedia.org/wiki/First-class_functions

JavaScript Criticism

There is severe criticism of JavaScript, … too many design flaws
- One global namespace! No modules, no block scope, … and more… The real

bad parts of JS
- Some thing will hopefully change with ECMA version 6, but when … ?

Some hard points to grasp
- Types and coercion?
- Scope and hoisting work?
- What is “this”?
- How does prototypal inheritance work?
- … NOT an easy language!

JavaScript gotchas
JavaScript WAT (starting at 1:23)

http://johnkpaul.github.io/presentations/empirejs/javascript-bad-parts/#/
http://johnkpaul.github.io/presentations/empirejs/javascript-bad-parts/#/
http://johnkpaul.github.io/presentations/empirejs/javascript-bad-parts/#/
http://www.codeproject.com/Articles/182416/A-Collection-of-JavaScript-Gotchas
http://www.codeproject.com/Articles/182416/A-Collection-of-JavaScript-Gotchas
https://www.destroyallsoftware.com/talks/wat
https://www.destroyallsoftware.com/talks/wat

Types and Coercion ...

Using JS ==
operator.
Green is true

Truth table for == operator
- Coercion (type conversion) occurs with primitive types and many operator; +,

==, !=, >, =<, …

“JavaScript has two sets of equality operators: === and !==, and their evil twins == and !
=. The good ones work the
way you would expect. If the two operands are of the same type and have the same
value, then === produces true
and !== produces false. The evil twins do the right thing when the operands are of
the same type,
but if they are of different types, they attempt to coerce the values.
The rules by which they do that are complicated and unmemorable. The lack of
transitivity is alarming.
My advice is to never use the evil twins. Instead, always use === and !==
(all of the comparisons in slide produce false with the === operator).”
// Douglas Crockford, JS Guru (bit modified)

https://en.wikipedia.org/wiki/Type_conversion

Disclaimer

There are many ways to use and write JavaScript
- No standard common agreed upon way or style

- Many opinions, what to use and how
- Following samples is one way to do it (a rather sensible way I think)

JavaScript style guides

https://github.com/Seravo/js-winning-style

Crash Course JavaScript

Now we’ll run through a lot of code
- See sample project js (pictured in slide)
- Using Chrome Developer Tools as debugger
- In between we’ll look at some picture (the following slides)

Some links if you would like to dig deeper.
- Speaking Java (JavaScript tutorial)
- JavaScript, Mozilla Developer Network
- More on coercion (GitHub)
- ECMA-262-3 in detail (hardcore JS by Dmitry Soshnikov)

http://speakingjs.com/es5/index.html
http://speakingjs.com/es5/index.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://github.com/getify/You-Dont-Know-JS/blob/master/types%20&%20grammar/ch4.md
https://github.com/getify/You-Dont-Know-JS/blob/master/types%20&%20grammar/ch4.md
http://dmitrysoshnikov.com/tag/ecma-262-3/
http://dmitrysoshnikov.com/tag/ecma-262-3/

Standard Built-in Objects

Global /
window

Boolean

String

RegExp

Date

Array

Function

Object

..Errors...

Number

JSON

Math

Object.prototype

Function.prototype
= Constructors

= Objects

= Others

The Standard defines several built-in objects (supplied by runtime environment)
- NOT same as DOM API objects but …
- … the standard Global object in browsers renamed (replaced?) with the

window object
- The constructor properties of the global object: Array, Object, Function , etc.

(more to come)
- The *.prototype property of the constructor properties (Object.prototype, etc.)
- Other properties: JSON and Math (seems similar to static Java classes)

Docs
- String
- Math

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

Prototype Chain

var o = {
val: 7,
str: 'qwerty'

};

val : 7
str : ‘qwerty’
__proto__ :

__proto__ : null

Object.prototype
[built-in]

o

All objects have an (internal) reference to a “parent” object the “__proto__” (chain
ending in the top level
built-in object Object.prototype with no parent)

- __proto__ not part of JS standard interface (not yet, i.e. ECMA 5.1). Don’t use
directly in code (use Object.getPrototypeOf(...))

- Parent for object literals will be Object.prototype
- Property lookup will follow __proto__ chain, if property not found in actual

object check __proto__ etc. (prototypical inheritance)
- If property not found in chain, undefined returned
- hasOwnProperty()
- … more to come …

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwnProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwnProperty

Object Instantiation

Object initializers
var person = { name : “Otto” };

Object.create
var person = Object.create({ name : “Otto” })

Constructor function
var person = new Person(“Otto”);

There are at least three ways to create an object
- Object initializers already seen
- Working with objects
- Using new looks like Java but it’s not ...

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects

Object.create

var animal = { type : “unknown” };
var lobster = Object.create(animal);
lobster.type = “Invertebrate”;
var fish = Object.create(animal);
fish.type = “Fish”;

type :
“unknown”
__proto__ :

Object.prototype

type : “Fish”
__proto__ :

type : “Invertebrate”
__proto__ :

Object.create
- Will create object and set __proto__ to parameter object.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/create
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/create

Constructor Functions

__proto__

MyCtor.prototype

Function.prototype
[built-in]

__proto__

 Object.prototype
[built-in]__proto__

MyCtor.
prototype.
constructor

function MyCtor() { … }
var myObj = new MyCtor();

__proto__

MyCtor

myObj

Unnamed,
automatically
created
object

Objects

All function (function are objects) have a prototype property (NOT same as
__proto__, the object prototype)

- The property is in standard API, ok to use
- Prototype property points to automatically created nameless object …
- … used as __proto__ for all objects created by the constructor function in

combination with new operator
- Properties assigned to MyCtor.prototype shared by all objects (similar to Java

inheritance)
- Nothing special with constructor function so as an idiom we use leading

uppercase to distinguish.
- If forgetting new, variable will be undefined

Constructor Function Sample

this.name = name
this.say = function () {
...
}

common: function() {
…
}

name: “Otto”
say: function(){
…
}

__proto__

function Person(name) {
this.name = name || "unknown"; // this is actual object
this.say = function () { … };

}
Person.prototype.common = function (){ … };
var p1 = new Person("Otto");
var p2 = new Person("Fia");

name: “Fia”
say: function(){
…
}

Person
(function)

p1 p2

Person.prototype
(object)

See code sample _2_objects.js

var myModule = (function() {
// Private parts
var myPrivateVar = 0;

 myPrivateMethod = function(foo) { … };

 // Public API
 return {
 myPublicVar: "foo",
 myPublicFunction: function(bar) {
 myPrivateVar++;
 myPrivateMethod(bar);
 }
 };
})(); // <---- !

myModule.myPublicVar;
myModule.myPublicFunction("...");

Module Pattern

The Module

Module pattern

There are some variations
- here is one
- JS design patterns

https://carldanley.com/js-module-pattern/
https://carldanley.com/js-module-pattern/
https://addyosmani.com/resources/essentialjsdesignpatterns/book/
https://addyosmani.com/resources/essentialjsdesignpatterns/book/

Pseudo-Classical Style
var Person = function(name, age, sex){
 this.name = name || “unknown”;
 this.age = age || -1;
 this.sex = sex || “unknown”;
};

Person.prototype = [module pattern]

var p = new Person("Otto", 13, "Male");

Pseudo-classical style
- To emulate class based OO languages like Java
- PC style = Constructor + Constructor.prototype + Module pattern
- If inheritance set: sub.prototype.__proto_ = base.prototype
- … override, polymorphism and more.
- Details of the object model (using Object.create)

http://javascript.info/tutorial/pseudo-classical-pattern
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model

Unobtrusive JavaScript

CSS (the view)

HTML (the
structure)

var MyCompany =
MyCompany || {
 MyApplication: {
 Model: {}
 }
};

JS (the behaviour)

Creating a
namespace

Unobtrusive JavaScript
- Separations of concerns
- No CSS, JS in HTML
- Namespaces

https://en.wikipedia.org/wiki/Unobtrusive_JavaScript#Namespaces
https://en.wikipedia.org/wiki/Unobtrusive_JavaScript#Namespaces
http://elegantcode.com/2011/01/26/basic-javascript-part-8-namespaces/
http://elegantcode.com/2011/01/26/basic-javascript-part-8-namespaces/
http://elegantcode.com/2011/01/26/basic-javascript-part-8-namespaces/

JavaScript APIs

M
o
r
e

There are many
- DOM API in HTML5 specification
- … others

http://www.w3.org/TR/#tr_Javascript_APIs

