Service Based Approach

INntro
WS Slides #1

Content

- Web Services
- REST
- Client State

Service Based Background

158 Aegtl;ﬁﬁl.
REST

Basic-Auth

DELETE

The Web is a marvelous “application”
- Has been up 24/7 for 30-40 years
- Has been able to expand many magnitudes
- More users, more data, more advanced services .. the perfect application?

Wouldn't it be good to build our application like that??
- So what are the key principles behind the Web?

In slide
- XML, JSON, data formats
- GET, PUT, POST DELETE, the "HTTP verbs"
- Basic-Auth and OAuth, authorization
- REST, an architectural style

Web Services

Service Requester - A

Request ———{>

P -

Service requester - B < R

gQi Wab service disgros - Masish Chhabrs

Service Provider,

A Web service
- Is asoftware system designed to support interoperable machine-to-machine
(m2m) interaction over a network.
- Service has an agreed on/public interface/API
- Other systems interact with the Web service in a manner prescribed by its
description

Types of Web Services
- WS-', A stateless messaging service (Simple Object Access Protocol, SOAP),
describing service interfaces in XML (Web Services Description Language,
WSDL).
- Heavyweight.
- Code generation from WSDL and conversion to objects. WSDL
example
- WS-"is a service oriented approach. The key abstraction is a service (a
verb)
- WS-REST, RESTful Web Service, an architectural style ...
- WS-REST, is not service oriented, it's resource-oriented, the key
abstraction is a resource (a noun). Web Service for REST is a bit
misleading

Programmer's view
- The application is composed of loosely coupled, distributed, reusable,
platform/language independent services (resources)

http://www.vasttrafik.se/External_Services/TravelPlanner.asmx?WSDL
http://www.vasttrafik.se/External_Services/TravelPlanner.asmx?WSDL
http://www.vasttrafik.se/External_Services/TravelPlanner.asmx?WSDL

Roles
- Consuming a Web Service, i.e a client
- Producing, implement a Web Service

Representational State Transfer
(REST)

REST API

REST
- And from Wikipedia, REST

Key principles that makes the web work and scale

1. Identification of resources (as URIs)

2. Manipulating of resources through representations (in responses we get an
representation of the resource, for example as HTML/JSON/XML)

3. Self-descriptive messages (each message contains all the information
necessary to complete the task i.e.’stateless”)

4. Hypermedia as the engine of application state (HATEOAS), the client/server
interaction state is in the hypermedia they exchange

// Roy Fielding, author of HTTP specification

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/Representational_state_transfer

Stateless .. What state?

P>

Client

Application
State

Server

Our application will have state, so how is REST stateless?
- Answer: No client state!
- l.e nosession on server
- Everything heeded must be in request (also authorization, more later ..)

Implementing REST

(_ /orders)

GET dlist all oroers
e B - unused

POST - add a new order
DELETE - wnused

Jorder/{id}
, GET - get order details
------- PUT - update order
POST - add item
DELETE - cancel order

=interfaces

fcustomers
Resource
' GET - list all customers
o <——-----1 PUT - unused
POST y POST - add new customer
DELETE ' DELETE - unused

feustomer/fid}

v
4 GET - get customer details
e mmmn PUT - update customer
POST - unused

DELETE - unused

focustomerf{id}/orders

& GET - get all orders for customer
------- PUT - unused

POST - add order

DELETE - unused

Example of practical interpretation of RESTful CRUD interface (create, read, update,
delete... the basic operations on data)
1. All resources accessible with URLs (http.//www.server,
com/application/orders)
2. We will get object representations as JSON (or other)
3. HTTP s stateless and self descriptive (simple unified interface: GET, POST,
PUT, DELETE, .. the verbs used for operating on the resources)
4. Embed links in response (upcoming)

Implementing HATEOAS

GET /account/12345

HTTP/1.1 HTTP/1.1 200 OK
<?xml version="1.0"?>
<account>
<account_number>12345</account_number>
<balance currency="usd">100.00</balance>
<link rel="deposit" href="/account/12345/deposit” />
<link rel="withdraw" href="/account/12345/withdraw"” />
<link rel="transfer" href="/account/12345/transfer" />
<link rel="close" href="/account/12345/close" />
</account>

HATEOAS means that hypertext should be used to find your way through the API.
- The GET response contains requested data and ..
- .._links to associated data.
- APlis self exposing! The hypertext is actually telling us what is allowed and
what not
- Slide example is XML (we mostly use JSON, more to come ..)

Testing some RESTful Services

Flickr (photo service, no API key)

http://api.flickr.com/services/feeds/photos_public.gne?
tags=flower&lang=en-us&format-atom (try change format)

Google Maps (no API key)
https.//www.google.se/maps/@59.7009921,11.8938365,10
z?hl=sv (try change coordinates)

Many public RESTful services available.
- WebAPIs
- NOTE: Some APlIs are
- .. client side, i.e. possible to call with client side JavaScript, some are ..
- .. server side, must call from server side code (often involving OAuth ..
a pain)
- ..and some are both.
- Possibly need an API-key to send with requests (must get one from the
producer)
- Example: https.//www.googleapis.com/geolocation/vi/geolocate?
key=AlzaSyCQKzCM8wVY..
- Possibly must register application
- If so need an account (Google, FaceBook, Twitter, Amazon, ..) ..
- Search for Developer pages

http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=en-us&format=atom
http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=en-us&format=atom
http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=en-us&format=atom
https://www.google.se/maps/@59.7009921,11.8938365,10z?hl=sv
https://www.google.se/maps/@59.7009921,11.8938365,10z?hl=sv
https://www.google.se/maps/@59.7009921,11.8938365,10z?hl=sv
https://en.wikipedia.org/wiki/Web_API
https://en.wikipedia.org/wiki/Web_API
https://en.wikipedia.org/wiki/Application_programming_interface_key

Web APIs

The OpenUniwmrséty

programmable|

flickr

oy

YAHOO! LocaL

Why Web APIs?

API

'Google Maps

Flickr

YouTube

Twitter

Amazon eCommerce
eBay

Facebook

Microsoft Virtual Earth
Last.fm

Google Search
del.icio.us

Yahoo Search

Yahoo Maps

Google Ajax Search
4118ync

Goagle Homepage
Yaheo Geocoding
Twilio

GeaNames

DN

Description
Mapping services

Photo sharing service

Video sharing and search

Microblogging service

Online retailer

Cnline auction marketplace

Social networking service

Mapping services

Online radio service

Search services

Social bookmarking

Search services

Mapping services

Web search companents

SMS, WAP, and email messaging

Portal gadgets

Geacoding services

Telephony service

Geographic name and postal code lookup

Category
Mapping
Photos
Video
Social
Shopping
Shopping
Social
Mapping
Music
Search
Bookmarks
Search
Mapping
Search
Messaging
Widgets
Mapping
Telephony
Mapping

Mashups
2101

552

505

Many many APIs exposed as RESTful services
Find your API

http://www.programmableweb.com/apis/directory
http://www.programmableweb.com/apis/directory

The RESTful Hype

WS- *
WSDL
Recognizable = _" '
, XML :
Client - Web Server
HTTP
REST

HTTP

g
Response & :
Reguest
Browser § Web Server

REST in rather new, REST is very hyped right now .. (seems to work for many cases,
but ..)

- .. watch this .. and_this

- Still, .. we only use WS-REST

http://www.slideshare.net/pizak/rest-vs-ws-myths-facts-and-lies-352457
https://www.ria.ee/public/x_tee/Xroad-technical-factsheet-2014.pdf
http://www.slideshare.net/pizak/rest-vs-ws-myths-facts-and-lies-352457

