
 A Request Based Approach
with JEE

BWA Slides #7

Finally Arriving at Request Based
Application

Have platform and all techniques

Need some design
- MVC
- PRG-pattern

Characterization Review

Request based approach interact directly with low
level HTTP concepts, explicitly handling request and
responses
Pro
- Full control
- Many programmer like

Cons
- Low abstraction level

Approach present on many other platforms (PHP,..)

MVC for Request Based JEE

Often hidden in some framework but we decided not
to use any server side framework
- We do an in-house design using the FrontController (JEE) design
pattern

MVC Parts

Model: Model objects (Product, ShoppingCart,...)

View: JSPs

Control: One or more “FrontController” Servlet(s)
- “All” request handled by the Servlet(s)
- Servlet do all processing (or delegate to control layer) using
model objects and lastly decides the outcome view
- Asynchronous processing possible

MVC/Front Controller

<<Servlet>>
FrontController

switch(action)

switch(view)

Model

JSPs

Incoming request with parameters
action = .. what to do ...
view = .. where to go...

view = ... (possible data
to display)

response

Possible return data

Control layer
(delegate
from Front
Controller)

If Servlet
expands too
much, delegate

Arrows =
call flow

Control

View

The “Double Submit” Problem

Shouldn't be possible to submit same post data twice
i.e. buy two Gibson or other (post not idempotent)

If page rendered as result of a post (remember!) we possibly
get another post if
- reloading result page using Refresh/Reload browser button (explicit page reload,
implicit resubmit of request)
- clicking Back and then Forward browser buttons (implicit page reload and implicit
resubmit of request)
- returning back to HTML form after submission, and clicking Submit button on the form
again (explicit resubmit of request)

Browser shows warning (but possible confuses user)

http://www2.gibson.com/Products/Electric-Guitars/Archtop/Gibson-Custom/L-5-CT.aspx
http://en.wikipedia.org/wiki/Idempotence

The PRG pattern

Post-Redirect-Get pattern is a solution to the double
submit problem
- Never show pages in response to POST
- Always load pages using GET
- Navigate from POST to GET using redirect
- Page reloaded with GET no problem

More issues and details

JEE request based implementation
- Let FrontController servlet redirect if handling a post

http://www.theserverside.com/tt/articles/article.tss?l=RedirectAfterPost
http://www.theserverside.com/tt/articles/article.tss?l=RedirectAfterPost

The “Master/Detail” Problem

We have a (master) table with items. Would like to
display details about single item
- How to transfer search criteria from master to detail (which item
to select)?

Request Based Solution
- Add link to detail in master, use EL to add search criteria

<!-- In master (a table) add links to detail -->
<tr>

<td>${i.id}</td>
<td>${i.name}</td>
<td>${i.price}</td>
<td>Edit</td> <!-- Details link --
>
<td>Del</td>

</tr>

User Navigation

Navigation in long lists (spread over many pages)
- Use a “current page” as a session attribute
- Use EL in page to navigate (accessing current page)
- Possible need extra Servlet to do navigation

<!-- The previous link -->
<a href="shop?view=products&page=${sessionScope.CURRENT_PAGE-1}"

 class="btn">Prev

Fancy URI's (URLs)

“...Rewritten URIs (sometimes known as short or fancy URIs) are
used to provide shorter and more relevant-looking links to web
pages. The technique adds a degree of separation between the
files used to generate a web page and the URI that is presented to
the world [hide implementation details].”
 //Wikipedia

Examples
● Non fancy: http://www.example.com/Blogs /Posts.php?

Year=2006&Month=12&Day=19
● Fancy: http://www.example.com/Blogs /2006/12/19/

Designing URI's

Hard to say where it's going to end. i.e what URI will
we finally show the user

Possible adhere to using "technical" URI inside
application
- Easy for developer to understand

Map technical URIs to user friendly (fancy) URIs
- No direct support for mapping in JEE
- PrettyFaces
- Possible use server (application external). Not covered

http://ocpsoft.org/prettyfaces/

Authentication and Authorization

Simple in-house solution for now
- When user logs in, if login ok, put User-object in session

- Hard code some users, later we use a database

- Use a Filter for protected resources
- Filter check if there is a user in session, if not redirect to login
- Logout or timeout removes destroys session (and user)

We’ll later look at the official (and other) way to do it

