
JPA Managing
JPA Slides #3

Content
- Persistence Layer
- Enterprise Java Beans
- Session Beans
- More Injection
- Persistence context
- Entity Class Life Cycle
- Cacheing, fetching and orphan removal
- Persistence and Testing

Developing a Persistence Layer

Control Layer

Persistence Layer
Entity
Class Table

DatabaseApplication

Call

Entity classes not managed by themselves
- Handled by a persistence layer
- Persistence layer must handle transaction processing!

- Transactions fundamental for database integrity

Basic flow
1. Begin the transaction
2. Execute a set of data manipulations and/or queries
3. If no errors occur then commit the transaction and end it
4. If errors occur then rollback the transaction and end it

If program manipulate database (i.e. any write)
- Most use transactions

- Explicit transaction demarcation possible with statements like … (tx is
object representing transaction)

- tx.begin(), tx.commit() and tx.rollback()
- Simpler to use Enterprise JavaBeans, EJB, next slide …

http://docs.oracle.com/cd/E12839_01/web.1111/b32441/persun.htm#JITDG93257
https://en.wikipedia.org/wiki/Transaction_processing

Enterprise JavaBeans EJB

Enterprise JavaBeans EJBs are transaction aware objects
- Classes with annotations
- Will automagically handle transactions, we don’t need to code …

- ... but if special needs also possible to code (we use for some testing)
- Must run in EJB container (GlassFish)

- Will handle life cycle of EJBs
- Services offered by EJBs

- Automatic transaction demarcation
- If transaction fail, automatic rollback and exception

- Dependency injection (inferior to CDI)
- Concurrency handling

- An EJB (session) bean does not have to be coded as reentrant
- Timerservice/Scheduling

- Used for long lived business processes (may survive server
crash)

- Send an email each year: “Time for Christmas ... buy, buy,
buy”..

- Web services endpoint (EJB may act as REST resource class)
- Security
- Aspect oriented programming, interceptors

EJB types
- Session Beans (SB)

- Used for business logic, processes, work flows
- Executes on behalf of a unique client, client running the session (i.e

https://en.wikipedia.org/wiki/Enterprise_JavaBeans
https://en.wikipedia.org/wiki/Enterprise_JavaBeans
https://en.wikipedia.org/wiki/Reentrancy_(computing)

- session scoped)
- Stateless session bean, no mutable application logic state (no

conversational state)
- Work done in single method call.

- … stateful session bean
- If need state in between method calls (avoid)

- Also singleton beans, not covered
- Only stateless covered here, if specific need check out stateful
- Possibly asynchronous, we don’t

- Message Driven Beans (MDB)
- Used by Java Message Service (JMS). Asynchronous message service

with high quality of service
- Not covered...

EBJs must obey
- JavaBeans specification
- Concrete class (not abstract)
- Not final
- Inheritance possibly (involving EJBs only)

EJBs should not
- use Java Reflection API to access information unavailable by way of

the security rules of the Java runtime environment
- read or write non-final static fields
- use this to refer to the instance in a method parameter or result
- use the java.awt/swing packages to create a user interface
- create or modify class loaders and security managers
- redirect input, output, and error streams
- obtain security policy information for a code source
- stop the Java virtual machine…
- and more …
- … i.e. use as intended : Transaction awareness

Possible to collect EJBs in reusable packages (jar-files).
- Many front-ends to share common back-end

- Advanced deployment issues

Much more … but we probably don’t need.

Stateless EJB Sample

@Stateless
public class AuthorRegistry extend … {

@PersistenceContext
 private EntityManager em;

public EntityManager getEntityManager() {
 return em;
 }

}

Will make class an
EJB!

To make a POJO class an Entity class
- Add annotations (@Stateless or @Local, see next slide)

Note state is not conventional state (it’s a service object)
- @PersistenceContext, upcoming

@Local
public interface ICustomerRegistry … {

List<Customer> getByName(String name);
}

public class CustomerRegistry implements ICustomerRegistry {

}

Will make implementing class
an EJB!

EJB using Interface

Possible to use interfaces for EJBs
- @Local, will live in same JVM
- @Remote, lives in other JVM (calls transparently over network)

- Not used by us.

Session Bean Lifecycle

import javax.ejb.Stateless;
@Stateless
public class Library {
 …
}

Life cycle handled by container
- Efficient, pooled by container, shared by many clients
- Callbacks at certain life cycle events, @PostConstruct, @PreDestroy

EJB Injection

@Named("cdibean")
@RequestScoped
public class MyCDIBean {

@EJB
private MyEJB myEjb;
...

}

EJB into CDI

Resource into EJB

Dependency injection
- Handled by EJB, but can coexist with CDI
- Inject EJB into CDI (or Servlet)
- Inject resources into EJB
- @Inject annotation should(!) work for EJBs too.

TIP: Use: NetBeans > Insert Code ... > Call Enterprise Bean

Persistence Environment

JNDI
Application

DataSource

shop

GlassFish
JavaDB

<persistence-unit

jdbc:derby:
//localhost:
1527/shop
“jdbc/shop”

setup/glassfish-resources.xml
(data source definition, inc.
JNDI-name)

em.persiste(...)

META-INF/persistence.xml
(persistence unit definitions)

test

...

Tech talk
- Application runs in container (GlassFish)
- Uses JNDI, Java Naming and Directory Interface

- Key/value-store (imagine: global Tree<String, Object>) to keep track of
a …

- … DataSource object
- Object created outside application (application external, refactored out

of application)
- Many application may use same)
- “jdbc/shop” is the JNDI-name of the object in slide

- Defined in glassfish-resources.xml.
- Object holds info about database: URL (location, port), name,

passwords and more
- Creation/managing handled by NetBeans/GlassFish

Persistence Context

Persistence
Context

Application

Database

Persistence Context, PC
- A set of managed entity instances (objects) in which for any persistent entity

identity [primary key] there is a unique entity instance.
- I.e. a table row (unique by primary key) will be represented as a unique

in memory object in PC
- Identity shall use ==

- Every PC is associated with a persistence unit (the list of entity classes in
persistence.xml…)

- Variations
- Transaction-Scoped: PC follows the transaction, we use!

- Use: In stateless environment (stateless session EJB)
- Extended: PC bound to lifecycle of some stateful managed object

- Use: In stateful environment (stateful session EJB)
- Both use JTA transaction (Java Transaction API, Java EE server

transactions).
- Very many customizations options for transactions in JPA, not

covered

The main role of the persistence context is to make sure that a database entity
object is represented by no more than one in-memory entity object within the same
EntityManager (see next slide).

http://www.objectdb.com/java/jpa/persistence/managed#The_Persistence_Context_
http://www.objectdb.com/java/jpa/persistence/managed#The_Persistence_Context_

EntityManager API

Persistence-unit

Persistence Layer

Entity
Class

Persistence Context

Entity
Class

persistence.xml

Database

Application

EntityManager

Calls from control
layer

Connection

No
connection

EntityManager API
- The entity instances and their lifecycles are managed by an EntityManager

(EM) object
- Every EntityManager manages one (and only one) persistence context.

- Therefore, a database object can be represented by different memory
entity objects in different EntityManager instances. But retrieving the
same database object more than once using the same EntityManager
should always result in the same in-memory entity object.

- Persistence context is a a first level cache of entities handled by the
EM

- Variations:
- Container Managed Entity Managers (container manages lifecycle of

EntityManager), we use!
- Application Managed Entity Managers (avoid)

- Possible to inject EM into EJBs
@PersistenceContext(“PU name”) // Name optional if only one PU
private EntityManager em;

Use the EM API to interact with the persistence context (and hence the database).
- The CRUD operations

- em.persist(object) // Note: After this call object has id
- em.find(... primaryKey)
- em.merge(object) // Update and more …
- em.remove(object)
- …

http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html
http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html
http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html

- Also: Possible to construct queries using em.createQuery(...) , more to
come...

Automatic PC propagation
- Only for container managed EntityManagers
- If automatic PC propagation all EJBs involved use the same PC (EJBs calling

EJBs)
- If no propagation have to pass EM around (extra method parameter

needed)
- ... many, many, details...

- Other benefit of using EJB/Container

Entity Class Instances Lifecycle

Lifecycle
callbacks
@PrepPersist,
@Pre...

At database commit
(transaction end)

Inside transaction
Inside transaction

Entity class instance (@Entity) may be
- New, no persistent identity
- Managed, has identity in Persistence context, will be synchronized with real

database at next commit
- Commit automatically inserted

- Detached (not managed), has identity but not in PC will not be synchronized
with database

- Removed, has identity in PC, will be removed from real database at next
commit

Entities detached at
- Transaction commit (after last line in method, upcoming ...)
- Transaction rollback (exception)
- Explicitly detaching the entity

 em.flush() // Must do before...
 em.detach(p) // ...this

- Clearing the PC: em.clear()
- Closing the EM: em.close()
- Passing by value (serializing)

Refresh
 // State refreshed from database
 em.refresh(p); // p managed (before and after)

Merge will create new managed copy or state copied

// p detached
p1 = em.merge(p) // p1 != p !!! New object
p = em.merge(p) // Could look like this, tricky...

// Also possible, skip returntype
em.merge(p) // Any modification on p inside transaction persisted

Possible to check if managed
- em.contains(p)

- True if p retrieved with em.find(), em.getReference(), em.persist(p)
called or persist cascaded (upcoming)

Life cycle callback methods
- @PrePersist, @PostPersist,... (only one objects involved)

- Bean validation triggered just before @PrePersist, @PreUpdate
- Possible customization

- Separate listener class (possibly many objects involved)

PC active

Life cycle Ex 1

@Stateless
public class ShoppingCartBean

@PersistenceContext
EntityManager em;

public OrderLine createOrderLine(Product p, Order o){
OrderLine ol = new OrderLine(p,o);
em.persist(ol) ;
return ol;

}
}

New
Entity

Managed Entity (has
id after call)

Detached
Entity

This is container
managed EM
with transaction
scoped PC

PC Active

PC Active

Life cycle Ex 2

@Stateless
public class ShoppingCartBean

@PersistenceContext
EntityManager em

public OrderLine createOrderLine(Product p, Order o){
OrderLine ol = new OrderLine(p,o);
em.persist(ol) ;
return ol;

}

public OrderLine updateOrderLine(OrderLine ol){
OrderLine ol2 = em.merge(ol) ;
...
return ol2;

}
}

Detached

Managed

PC Active

Life cycle Ex 3

@Stateless
public class ShoppingCartBean

@PersistenceContext
EntityManager em

public OrderLine createOrderLine(Product p, Order o){
OrderLine ol = new OrderLine(p,o);
em.persist(ol) ;
OrderLine ol2 = em.find(OrderLine.class, ol.getId());
// ol == ol2 is TRUE
return ol;

}
}

Retrieval
returns same
instance

Cascade, Fetching and OrphanRemoval

Cascade and Fetch
public class Publication ... {

// No cascade on remove!
@ManyToOne(cascade = {CascadeType.PERSIST,

CascadeType.MERGE}, fetch = FetchType.LAZY)
private Book book;
// No cascade on remove!
@ManyToOne(cascade = {CascadeType.PERSIST,

CascadeType.MERGE}, fetch = FetchType.LAZY)
private Author author;
…

}

OrphanRemoval
@OneToMany(orphanRemoval = true)
private Set<AppUser> members = new HashSet<>();

Possible to specify cascade and fetching behaviour using annotations on entity
classes

Cascading
- Should storing, deleting, etc. apply to associated objects?

- If car deleted probably engine should be deleted (also in database)! A
cascade will automate the process, prefer!

- If no cascade: Have to persist each single objects in correct order
(avoid)

- Cascade types: ALL, PERSIST, REMOVE, MERGE, REFRESH, CLEAR, ALL
- Cascade may require bidirectional mappings

Fetching
- When to load associated objects

- EAGER, when owner loaded
- LAZY, when code executed

- Default (otherwise annotate)
- @OneToOne, EAGER
- @ManyToOne, EAGER
- @OneToMany, LAZY
- @ManyToMany, LAZY

Orphan removal
- Only for @OneToOne and @OneToMany
- If object removed from collection will be removed from database.

http://www.objectdb.com/java/jpa/persistence/delete#Orphan_Removal_
http://www.objectdb.com/java/jpa/persistence/delete#Orphan_Removal_

Persistence and Testing

Complicated to test persistence layer
- Would like to run tests outside container
- It’s Possible to use an embedded container, see below
- … or using a Servlet (running in a container, avoid) …

Arquillian (tutorial)
- A testing platform for testing Java enterprise applications by enabling

creation of integration, functional, behaviour tests …
- Think: JUnit for JEE

- Possible to use embedded database (we don’t).
- JavaBD must be running

http://arquillian.org/
http://rpestano.wordpress.com/2014/06/08/arquillian/
http://arquillian.org/

Transactions in Arquillian
@Inject
UserTransaction utx;

...
utx.begin(); // Start transaction
pubList.create(new Publication(

new Book("aaa", 1f, "abc"), a));
pubList.create(new Publication(

new Book("bbb", 2f, "abc"), a));
...
utx.commit(); // End transaction
...

In Arquillian tests must handle transactions explicit!
- Test classes are NOT EJBs
- Inject UserTransaction

