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Characterization Review

Much more of standard (non-web) OO-programming
- Well known concepts of objects, components and listeners
- High abstraction level avoid accessing HTTP request etc. (but 
pops-up...)
- Libraries of GUI components (higher level frameworks)
- Possibly a bit lack of control 



Design and MVC

JSF/Facelets/CDI/Bean Validation is not a complete 
framework, no default MVC design
- We use no framework
- For now we have to design ourselves, so yet another in house 
MVC- solution
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JSF Application Design
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The “Master/Detail” Problem

Solved by (similar to request based approach)

<!--In a master table -->
<td>

<h:link value="Edit" outcome="personDetail">
<f:param name="id" value="#{person.id}" />
<f:param name="fname" value="#{person.fname}" />
<f:param name="age" value="#{person.age}" />

</h:link>
</td>

<!-- Detail page -->
<f:metadata>

<f:viewParam name="id" value="#{personDetail.id}"  />
<f:viewParam name="fname" value="#{personDetail.fname}"  />
<f:viewParam name="age" value="#{personDetail.age}"  />

</f:metadata>



Pagination

One possibility for list  
- ViewScoped bean holds currentPage, methods prev, next, … call 
with AJAX (some method in request cycle, to get new values)

<!-- Current page in personList bean -->
<h:commandButton value="Prev" actionListener="${personList.prev}">
     <f:ajax execute="@form" render="personsPanel" />
</h:commandButton>
                   
<h:commandButton value="Next" actionListener="${personList.next}" >
      <f:ajax execute="@form" render="personsPanel" />
</h:commandButton>

Or SessionScoped bean with non-AJAX calls or higher level 
component suites



JSF PRG 

PRG pattern 
- Use view parameters
- If no data should survive use redirect (see navigation)
- If data should survive use “includeViewParams=true”
- See code samples

https://blogs.oracle.com/enterprisetechtips/entry/post_redirect_get_and_jsf
https://blogs.oracle.com/enterprisetechtips/entry/post_redirect_get_and_jsf


JSF Resources 

For CSS, images, JavaScript, ...using the "library" attribute

Example: NetBeans project/Maven 
CSS in Web Pages/resources/css, JavaScrip in Web Pages/ 
resources/js, etc 
  
 <html>
  <h:outputStylesheet library="css" name="styles.css" />
  <h:outputScript library="js" name="utils.js" target="head"/>
    <body>
      <h:graphicImage library="img" 
                        name="tomato.jpeg" alt="tomato"/>

  



JSF I18N 

Internationalization (i18n) using resource bundles
- msg.properties, msg_de.properties, msg_sv.properties, ...
- Flat text files to Map<String, String>

In faces-config.xml
<resource-bundle>
    <!-- Package and folder hierarchy (must be nested)-->
   <base-name>edu.chl.hajo.i18n.msg</base-name>
   <!-- This is the name used in EL-expressions -->
   <var>msg</var>
</resource-bundle>

In page
   <..."#{msg.lblWelcome}".../>

  



JSF and Cleans URI's

No standard… as noted before

Have to rely on third party, PrettyFaces, others..



Testing

Beans must run in container, how to test?
- If using constructor or method injection possible to supply 
needed objects. Run JUnit test like POJO's
- Better use embedded container (“Arquillian” , see database slides)

Some thought's
- If using CDI as a thin administrative layer between GUI and model, 
there should not be much of testing needed
- No application logic in pages, beans



Authentication and Authorization

Standard JEE authorization technique, using realms 

A realm is a security policy domain defined for a web or application 
server. A realm contains a collection of users, who may or may not 
be assigned to a group

Types of realms (supported by GlassFish and Tomcat)
- file, Stores user information in a file. This is the default realm 
when you first install the GlassFish Server
- ldap, Stores user information in an LDAP directory
- jdbc, Stores user information in a database
...
  

http://docs.oracle.com/javaee/7/tutorial/doc/security-intro005.htm


Realms, Users, Groups, and Roles

A realm contains a 
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application.



File realm

For now we use the file realm with GlassFish 
- This is server dependent (Tomcat different)
- Database backed sample later (better)

Steps 
-Create users and groups in GlassFish file realm (using Admin 
console) …
-Create roles in application (defined in glassfish-web.xml)
-Map roles to users and groups (also glassfish-web.xml)
-Specify security constraints in web.xml



Web Security Constraints

Web resource collection: A list of URL patterns (the part of a URL after the 
hostname and port you want to constrain) and HTTP operations (the 
methods within the files that match the URL pattern you want to constrain) 
that describe a set of resources to be protected.

Authorization constraint: Specifies whether authentication is to be used and 
names the roles authorized to perform the constrained requests.

User data constraint: Specifies how data is protected when transported 
between a client and a server.

                                           



Web Security Constraints 
Example
// web.xml
<security-constraint>
    <web-resource-collection>
        <web-resource-name>wholesale</web-resource-name>
        <url-pattern>/acme/wholesale/*</url-pattern>
        <http-method>GET</http-method>
        <http-method>POST</http-method>
    </web-resource-collection>
    <auth-constraint>
        <role-name>PARTNER</role-name>  <!-- Role name in application -->
    </auth-constraint>
    <user-data-constraint>
        <transport-guarantee>CONFIDENTIAL</transport-guarantee>
    </user-data-constraint>
</security-constraint>

CONFIDENTIAL = GlassFish will use SSL (alt. NONE)



Web Authorization Mechanism

JEE supports

-Basic authentication (demo at service based approach)
-Form-based authentication (at component based approach)
-Digest authentication
-Client authentication
-Mutual authentication

Now we’ll use Form-Based (preferred way to so it)



Programmatic Login

Use a <h:form> for login and password
- Navigation see code samples

// In some backing bean connected to login page
// Using default mechanism and HTTPServletRequest (request)
try {

request.login(id, password);
User user = userService.find(id, password);
externalContext.getSessionMap().put("user", user);            
return "success";

} catch (ServletException e) {
   FacesContext.getCurrentInstance().addMessage(null,
                       new FacesMessage(FacesMessage.SEVERITY_WARN,
                                    "Login Failed", null));
   externalContext.getFlash().setKeepMessages(true);
}
return "fail";


