
AJAX
WS Slides #4

Content
- JSON
- AJAX
- XMLHttpRequest
- Asynchronous programming
- Promises
- jQuery and Angular AJAX
- Single page application
- Bookmarkability
- Same origin Restriction

JSON
{

 "firstName": "John", // Note " not '

 "lastName": "Smith",

 "age": 25,

 "address": {

 "streetAddress": "21 2nd Street",

 "city": "New York",

 "state": "NY",

 "postalCode": "10021" // integer 10021 also

possible!

 },

 "phoneNumber": [

 {

 "type": "home",

 "number": "212 555-1234"

 },

 {

 "type": "fax",

 "number": "646 555-4567"

 }]}

The JavaScript Object Notation (JSON) data interchange format
- JavaScript Object Notation (JSON) is a text format for the serialization of

structured data.
- It is derived from the object literals of JavaScript

- JSON can represent four primitive types (strings, numbers, booleans and null)
and two structured types (objects and arrays).

- An Object is an unordered collection of zero or more name/value pairs
- A name is a string and a value is a string, a number, a boolean, null, an

object, or an array
- An array is an ordered sequence of zero or more values

- Normally automatic conversion from/to JSON /JavaScript object in browser
at request and response

- If not converted, use global JSON-object (JSON.parse/JSON.stringify)

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON

Synchronous vs Asynchronous

Wait Wait

Request Full page

Async
request

Partial
page data

No wait (GUI responds)

Synchronous request
- User must wait while new page or content loads

Asynchronous request
- The "asynchronous" word, means that the response from the server will be

processed when available, at some later time
- Request will return directly (main program will continue)

- Client will not wait and freeze the display of the page.

AJAX

Asynchronous
Data Request

AJAX (or AJAX, short for asynchronous JavaScript and XML)
- Is a group of interrelated Web development techniques used on the client-

side to create asynchronous Web applications.
- With Ajax, web applications can send data to and retrieve from a server

asynchronously (in the background) without interfering with the display and
behavior of the existing page

Initial request - Full page load
- A full DOM is constructed
- Browser address bar will change

Asynchronous request - updated page (partial page load)
- New data (not full page) delivered to client

- Inserted into existing DOM
- No change in address bar

XMLHttpRequest

The XMLHttpRequest object is an API for fetching resources (and also POST) .
- The object supports any text based format, including XML, JSON.
- It can be used to make requests over both HTTP and HTTPS
- API is low level, we avoid

JS single threaded, how to make calls “in background”?
- Solution is to provide a callback function to the XMLHttpRequest objects

asynchronous method (as a parameters)
- Asynchronous calls has no return values.

- Callback automatically executed when async request data ready
- This is know as : Asynchronous programming

Calls to XMLHttpRequest will progress through “ready states” (setting readyState of
XMLHttpRequest object)

- Open -> readyState = 1
- After send -> readyState = 2
- Response content begins to load -> readyState = 3
- Finished loading -> readyState = 4
- Each change will trigger call to handler function assigned

to onreadystatechange attribute (possible to display progress)

NOTE: Chrome Developer Tools > Network has tab for XHR (XMLHttpRequest)

http://www.w3.org/TR/XMLHttpRequest/#xmlhttprequest

Asynchronous Programming

$(function () {
 $("#get").on("click", function () {
 asyncControl.get(function () {
 asyncService.get((function () {
 $("#result").html(JSON.
 stringify(this.

req.responseText));
 }).bind(asyncService));
 });
 });
});

asyncService.get
is an

asynchronous call

Asynchronous programming may lead to “callback hell”
- Callback hell is the eventual state of any complex callback oriented

asynchronous program where your code becomes extremely hard to
understand, reason about and maintain.

- Too much of nested anonymous inline callbacks

Promises
Callback approach
async1(function(){
 async2(function(){
 async3(function(){

 });
 });
});

Promise approach
var task1 = async1();
var task2 = task1.then(async2);
var task3 = task2.then(async3);

task3.catch(function(){
 // Errors from task1, task2, task3 here
})

The Promise object (new in ECMA 6 but available already in ECMA 5) is used for
deferred and asynchronous computations.

- A Promise represents an operation that hasn't completed yet, but is expected
in the future.

- It allows you to associate handlers to an asynchronous action's
eventual success value or failure reason.

- This lets asynchronous methods return values like synchronous
methods: instead of the final value, the asynchronous method returns a
promise of having a value at some point in the future.

- Promises makes async code “flat” (vs nested)
- Throw and Catch exceptions

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Chaining Promises

var FlightDashboard = function($scope, user, flightService, weatherService){
 travelService
 .getDeparture(user) // Request #1
 .then(function(departure){
 $scope.departure = departure; // Response Handler #1
 return travelService.getFlight(departure.flightID);// Request #2
 })
 .then(function(flight){
 $scope.flight = flight; // Response Handler #2

 // Request #3
 return weatherService.getForecast($scope.departure.date);

 })
 .then(function(weather){
 $scope.weather = weather; // Response Handler #3
 });
 };

Possible to chain asynchronous calls

A Promise is in one of these states
- pending: initial state, not fulfilled or rejected
- fulfilled: meaning that the operation completed successfully.
- rejected: meaning that the operation failed.

jQuery AJAX

GET (HTML)
$.load(… URL …);

Get JSON
$.getJSON(… URL …);

Low level API
$.ajax({
 url: "test.html",
 context: document.body
}).done(function() {
 $(this).addClass("done");
});

jQuery object ($) has many methods
- Call will return a Promise

Angular AJAX
Using $http object

ajaxApp.factory('Proxy', ['$http',
function ($http) {

var url = "http://localhost:8084/ajax/...";
 return {
 get: function () {
 return $http.get(url);
 }
 };
}]);

Angular has built in$http object.
- Injected when needed
- Will return Promise

Same Origin Restriction

Web origin
- User agents allow content retrieve from one origin to interact freely with

other content retrieved from that origin, but user agents restrict how that
content can interact with content from another origin.

- Untrustworthy script in one window could use DOM methods to read the
contents of documents in other browser windows, which might contain
private information.

Same origin policy
- The same-origin policy restricts how a document or script loaded from one

origin can interact with a resource from another origin. It is a critical security
mechanism for isolating potentially malicious documents.

- The same-origin policy specifies trust by URI
- Roughly speaking, two URIs are part of the same origin (i.e., represent the

same principal) if they have the same scheme, host, and port.
- A script can read only the properties of windows and documents that have

the same origin as the script itself.
- NOTE: Possibly problems with local files (file:/// …)
- Poses particular problems for large websites with many servers
- JSONP, trick to circumvent restrictions
- CORS, better mechanism to allow resources from different domains
- See also X-FRAME-Options

http://tools.ietf.org/html/rfc6454
http://tools.ietf.org/html/rfc6454
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
http://en.wikipedia.org/wiki/JSONP
http://en.wikipedia.org/wiki/JSONP
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options

Single Page Application

Using AJAX we don’t need any page loads, application stays on same page

Problems with AJAX (single page applications)
- If using AJAX the URI want change

- Normally uses # to navigate (but not sent to server)
- HTML5 hashChange-event

- Problems with bookmarks, forward/backward, favorites
- Complex to fix, better use 3rd party libraries

https://developer.mozilla.org/en-US/docs/Web/API/WindowEventHandlers/onhashchange
http://blog.mgm-tp.com/2011/10/must-know-url-hashtechniques-for-ajax-applications/
http://blog.mgm-tp.com/2011/10/must-know-url-hashtechniques-for-ajax-applications/
http://www.sitepoint.com/history-back-button-plugins/

