
JPA Mappings
JPA Slides #2

Content
- Persistence model
- Entity Class
- Natural and surrogate keys
- Uni- and bidirectional mappings
- Validation
- Persistence unit

Persistence Model

Persistence
model

OO model

Entity
Class

Entity
Class

The classes to persist are normally in the core model but ...
- … not all classes in OO-model should be persisted …
- … we have a persistence model, a subset of the OO-model
- Classes (instances of) that should be persisted referred to as : Entity classes

Shop case: Which classes in persistence model?

Basic JPA Entity Class

@Entity
public class Book implements Serializable {

@Id
private Long id;
private String title;
private Float price;
private String description;

protected Book() { // Non private must have
}

public Book(String title, Float price,
String description) {

this.title = title;
this.price = price;
this.description = description;

}

public Long getId() {
return id;

}
...

}

An entity class is a Java class typically representing a database table
- Mapping between class and table specified by annotations
- Instances of classes (attributes) will fill a row in the table

Specification (basics):
- Class fulfilling Bean specification (no args ctor, serializable, …)
- @Entity and @Id annotation mandatory
- No final, whatsoever!
- Inheritance OK
- Mixed non-entity and entity classes is also OK)
- Abstract class, OK
- Interface or Enum, NO!
- Must be listed in config file persistence.xml (in a “persistence unit” more later…

)

Default mapping rules (basics)
- Class mapped to single table.

- Table will have same name as class but uppercase
- Attributes mapped to column names, uppercase
- JDBC rules for mapping primitive Java types to database types

- int, Integer, ... byte[], Byte[], ...String, Data, Calendar, TimeStamp,any
ENUM, any Serializable.

- … more to come …

http://www.tutorialspoint.com/jdbc/jdbc-data-types.htm
http://www.tutorialspoint.com/jdbc/jdbc-data-types.htm

Customization
@Entity
@Table(

name = "AvancedBook", // Default is BOOK
uniqueConstraints={@UniqueConstraint(

columnNames={"TITLE"})} // Just for demo,
 // of course title may be same

)
public class Book implements Serializable {

@Id
private Long id;
@Column(name = "book_title", nullable = false,

updatable = false)
private String title;
private Float price;
@Column(length = 50)
private String description;
...

As usual JEE offers very many customization options
- Explanation of annotations

- Have to look around a bit, it’s there but sometimes not easy to find…
- Also see code samples

If attribute not should be persisted use @Transient
- Example: Customer shoppingcart shouldn’t be persisted (content persisted in

Order table or similar)

http://www.objectdb.com/api/java/jpa/annotations
http://www.objectdb.com/api/java/jpa/annotations

Collections and Enums

@Entity
public class Book implements Serializable {

// Will create extra table Tag
@ElementCollection(fetch = FetchType.LAZY)
@CollectionTable(name = "Tag")
private List<String> tags;

public enum Genre {
HORROR,
MISANTHROPY,
ROMANCE

};
// Will end up in same table
@Enumerated(EnumType.STRING)
private Genre genre;

…

Attributes as Collections or Enums no problems
- Collections in separate table (relationship created)
- Enums in same table

Embeddable

Any class
@Embeddable
public class Review implements Serializable {

@Temporal(TemporalType.DATE) // Must have temporal for dates
private Date reviewDate;
private String reviewText = "No review yet";

…
}

In entity class

@Embedded
private Review review;

Embeddable will end up in same table

Natural vs Surrogate Keys

Natural keys. A natural key is one or more existing data
attributes that are unique to the business concept.

Surrogate key. Introduce a new column, called a
surrogate key, which is a key that has no business
meaning.

Possible to use surrogate or natural keys with JPA
- Very heated topic and more debate
- You choose what you like …

Hmm … there seems to be quite a few natural surrogate keys?
- Person number (social security number, thou has some business meaning,

gender, location ...)
- Car registration number
- Order number
- Article number
- Shipping number
- …

http://www.agiledata.org/essays/keys.html
http://www.techrepublic.com/article/the-great-primary-key-debate/

Keys

Database generated surrogate key
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;

Using inner PK-class for natural key
@EmbeddedId
private PK id;

@Embeddable // Must have default ctor, equals, hashCode
public static class PK implements Serializable {

@Column(name = "BOOK_TITLE")
private String title;
@Getter
private String author;

public PK(String title, String author) {
this.title = title;
this.author = author;
}

}

Many possibilities for keys
- Surrogate keys may use @Generated value

- Will create table SEQUENCE in JavaDB
- NOTE: Before persisted object will have no id …

- … will affect equals and hashCode …
- … if objects in Collection possible not found, or other problems …
- If using surrogate key persist object directly after creation

- An article
- Possible for application to obtain key from database, see link keys

above.
- Natural keys may use @EmbeddedId or @IdClass and some key class

http://www.objectdb.com/java/jpa/entity/id#Obtaining_the_Primary_Key_
http://www.onjava.com/pub/a/onjava/2006/09/13/dont-let-hibernate-steal-your-identity.html
http://www.onjava.com/pub/a/onjava/2006/09/13/dont-let-hibernate-steal-your-identity.html

Inheritance and Generics

Inheritance
@MappedSuperclass
public class Person implements Serializable { … }

@Entity
public class Employee extends Person { … }

Generic Entity

@Entity
public class GenericEntity<T extends Serializable>
 implements Serializable {

private T genericAttribute;

…
}

JPA will handle generic classes and inheritance

Different strategies
- Single table for hierarchy (all super/sub-objects in same table)
- Joined strategy, many tables
- .. more. (see links i previous slides)..

Associations

A B

A B

A B

A B
1 *

1 1

1 *

1 1

A B1 1

A B
1 *

A B* 1

A B
* *

Unidirectional OK Bidirectional i.e.
mutual dependencies.
Avoid!

Classes A and B

Cardinality

Classes (objects) are connected with associations, database tables with
relationships

- Mapping an association will result in relationships between tables
- Not a perfect match …

- associations built on memory addresses, relationships built on keys
- associations have direction, relationships not
- In OO 1:1 cardinality must be forced through UNIQUE constraint on

foreign key

UML associations denotes a references in Java
- UML 1:1 says one object having a reference to another. But the id of the

object isn’t considered!
- It’s just some objects associated

- But when working with databases the id’s are what's count
- Database (ER) 1:1 says one table row is related to one unique row from

another table, not to any row.

SE best practices for associations
- Limit number of associations
- Prefer unidirectional, review use cases to decide direction

- If need to navigate in “other” (non existing) direction in code have to
search

- Probably best to let database search (i.e. use queries, upcoming)

Unidirectional 1:1 Mapping

A B
1 1

@Entity
class A {
 @OneToOne
 B b;
}

A

B

Join column,B_ID
(default name)

@Entity
class B{

}

If the exact identity of B is important (database 1:1) need to use @Column(unique=true) for
B_ID

Default so
not really
necessary

Unidirectional 1:* Mapping

A B
1 *

@Entity
class A {

}

@Entity
class B{
 @ManyToOne
 A a;
}

A B
1 *

A

B

Join column, B_FK (will be
added)

@Entity
class A {
 @OneToMany
 @JoinColumn(
name = B_FK)
 List b;
}

@Entity
class B{

}

Will end up
the same in
database

If not using
JoinColumn
extra table
created

OR

Note: @OntToMany more like “think as a programmer”, @ManyToOne mapping
more like “think as a database modeller”

Bidirectional 1:* Mapping

A B
1 *

A

B

Join column, B_FK (will be
added)

@Entity
class A {
@OneToMany(mappedBy
= "a") List b;
}

@Entity
class B{
@ManyToOne
@JoinColumn(name =
"B_FK") A a ;

The owning
side (table
with foreign
keys)

The
inverse
side

Mapping *:*

Author Book
* *

If many to many transform to … this!

class Author {
 Collection<Book> bs;
}

class Book{
 Collection<Author> as;
}

Author Book

1 *

Publication

* 1

@Entity
class Author {
}

@Entity
class Book {
}

@Entity
@Table(name="PUBLICATION", uniqueConstraints={
 @UniqueConstraint(columnNames={"AUTHOR_ID", "BOOK_ID"})
})
class Publication {

@ManyToOne
Author a;
@ManyToOne
Book b;

}

Optional
Will create
extra table

Many to many associations will need association class
- In slide using Publication
- Will create table for association class

Entity Classes and Validation

@Entity
public class Author {

 @Column(nullable = false,
 updatable = false)
 private String name;

 …
}

Possibly with many constraints on entity classes
- @NotNull is a Bean Validation annotation. It has nothing to do with database

constraints itself.
- Probably better use this in control layer

- @Column(nullable = false, updatable=false) is the JPA way of declaring a table
column

- not to accept null values
- not be able to update
- Use in persistence layer (entity classes)

Persistence Unit Details

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1" xmlns="http://xmlns.jcp.
org/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="managing_pu" transaction-type="JTA">
 <jta-data-source>jdbc/test</jta-data-source>
 <class>jpa.mgn.core.Author</class>
 <class>jpa.mgn.core.Book</class>
 <class>jpa.mgn.core.Publication</class>
 <class>jpa.mgn.core.Review</class>
 <exclude-unlisted-classes>true</exclude-unlisted-classes>
 <properties>
 <property

name="javax.persistence.schema-generation.database.action"
value="create"/>

 </properties>
 </persistence-unit>
</persistence>

As noted we have a config file persistence.xml containing “named” PUs
- All entity classes must be listed in PU, if not exception, "not a known entity

type"
- All classes in PU must be collocated in same database

- Possible to specify table generation strategy
- None, no tables created (should exist)
- Create, will create when executing program
- Drop and Create, delete and create when executing program

- Transactional type, always, Java Transaction API, JTA more to come …

https://en.wikipedia.org/wiki/Java_Transaction_API

Other Way Round

If skilled DB-designer
- Start with DB-design
- Auto Generate entity classes … (NetBean can do …)!

- Will add associations (and more) all over … i.e. rather messy code
- Also: Newer touch auto generated code …!

