
Service Based Approach
Intro

WS Slides #1

Serviced Based Approach

The Web is a marvelous “application”
- Has been up 24/7 for 30-40 years
- Has been able to expand many magnitudes
- More users, more data, more advanced services , …
- … the perfect application?

Hmmm.. wouldn’t it be good to build our application
like that??
- So what are the key principles behind the Web?

Representational State Transfer (REST)

Key principles that makes the web work and scale

1. Identification of resources (anything that can be named as a
target of hypertext)

2. Manipulating of resources through representations (in responses
we get an representation of the resource, for example as
HTML/XML)

3. Self-descriptive messages (each message contains all the
information necessary to complete the task i.e. "stateless")

4. Hypermedia as the engine of application state (HATEOAS), the
client/server interaction state is in the hypermedia they
exchange (client guided through application)

 // Roy Fielding, author of HTTP specification

Implementing REST

Practical interpretation of REST

1. All resources accessible with URL's
2. Use XML (or JSON we do … more later) as

representation of objects
3. HTTP is stateless and self descriptive (simple

unified interface: GET, POST, PUT, DELETE, ...)
4. Embed links in response i.e. present the options to

the client, more to come ...

RESTful CRUD Service

Resource URL: http://www.server.com/application/orders

CRUD = create,
read, update,
delete, the basic
operations on
any data

Requesting URL
above will give us a
representation of
the orders

A resource

Techniques for REST

Technique to build RESTful application
- Web Services (and more...)

Web Services

Probably no commonly accepted definition ?!

“A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It
has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in
a manner prescribed by its description using SOAP messages,
typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.”
//W3C Web Services Architecture

) This is mostly a definition of WS-, upcoming...

http://www.w3.org/TR/ws-arch/

Web Services Programmers View

The application is composed of loosely coupled,
distributed, reusable, platform/language independent
services (resources)

Service has an agreed on/public interface/API

Presentation or functionality from two or more
sources to create new services
- This is sometimes called a mashup application

Types of Web Services

WS-*, A stateless messaging service (Simple Object Access
Protocol, SOAP), describing service interfaces in XML (Web
Services Description Language, WSDL). Heavyweight. Code
generation from WSDL and conversion to objects. WSDL example

WS-REST, RESTful Web Service, an architectural style

http://www.vasttrafik.se/External_Services/TravelPlanner.asmx?WSDL
http://www.vasttrafik.se/External_Services/TravelPlanner.asmx?WSDL

Services vs Resources

WS-* is a service oriented approach. The key
abstraction is a service (a verb)

WS-REST, is not service oriented, it's resource-
oriented, the key abstraction is a resource (a noun)
- Web Service for REST is a bit misleading

WS-* vs WS-REST

REST very hyped right now, but watch this ...

We only use WS-REST
- True believers in REST

http://www.slideshare.net/pizak/rest-vs-ws-myths-facts-and-lies-352457
http://restafarians.com/

Web Services Roles

Consuming a Web Service, i.e a client
Producing, implement a Web Service

Many public Web Services available normally need
an account (FaceBook, Twitter, Amazon, …) and an
API-key to send with requests
- Must get one from the producer

Example: Consuming some
RESTful Services
Example: Flickr (photo service, no API key)
http://api.flickr.com/services/feeds/photos_public.gne?
tags=flower&lang=en-us&format=atom (try change format)

Example: YouTube (no API key)
http://gdata.youtube.
com/feeds/api/standardfeeds/most_viewed

Very many APIs to use at ProgrammableWeb

http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=en-us&format=atom
http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=en-us&format=atom
http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=en-us&format=atom
http://gdata.youtube.com/feeds/api/standardfeeds/most_viewed
http://gdata.youtube.com/feeds/api/standardfeeds/most_viewed
http://gdata.youtube.com/feeds/api/standardfeeds/most_viewed
http://www.programmableweb.com/

RESTful Application Architecture

In this course

Back-end
- Java based
- Java API for RESTful Web Services (JAX-RS)
- Very little of Java Architecture for XML Binding (JAXB, Java XML
handling)

Front-end
- JavaScript based (easy to issue HTTP calls to service)
- AngularJS, JavaScript MVC-framework by Google

 So have to start out with some JavaScript …

Running RESTful Application

We use GlassFish 4.x + any Browser

