
Service Based Approach
Intro

WS Slides #1

Content

- Web Services
- REST
- Client State

Service Based Background

The Web is a marvelous “application”
- Has been up 24/7 for 30-40 years
- Has been able to expand many magnitudes
- More users, more data, more advanced services … the perfect application?

Wouldn’t it be good to build our application like that??
- So what are the key principles behind the Web?

In slide
- XML, JSON, data formats
- GET, PUT, POST DELETE, the “HTTP verbs”
- Basic-Auth and OAuth, authorization
- REST, an architectural style

Web Services

A Web service
- Is a software system designed to support interoperable machine-to-machine

(m2m) interaction over a network.
- Service has an agreed on/public interface/API
- Other systems interact with the Web service in a manner prescribed by its

description

Types of Web Services
- WS-*, A stateless messaging service (Simple Object Access Protocol, SOAP),

describing service interfaces in XML (Web Services Description Language,
WSDL).

- Heavyweight.
- Code generation from WSDL and conversion to objects. WSDL

example
- WS-* is a service oriented approach. The key abstraction is a service (a

verb)
- WS-REST, RESTful Web Service, an architectural style

- WS-REST, is not service oriented, it's resource-oriented, the key
abstraction is a resource (a noun). Web Service for REST is a bit
misleading

Programmer's view
- The application is composed of loosely coupled, distributed, reusable,

platform/language independent services (resources)

http://www.vasttrafik.se/External_Services/TravelPlanner.asmx?WSDL
http://www.vasttrafik.se/External_Services/TravelPlanner.asmx?WSDL
http://www.vasttrafik.se/External_Services/TravelPlanner.asmx?WSDL

Roles
- Consuming a Web Service, i.e a client
- Producing, implement a Web Service

Representational State Transfer
(REST)

REST
- And from Wikipedia, REST

Key principles that makes the web work and scale
1. Identification of resources (as URIs)
2. Manipulating of resources through representations (in responses we get an

representation of the resource, for example as HTML/JSON/XML)
3. Self-descriptive messages (each message contains all the information

necessary to complete the task i.e."stateless")
4. Hypermedia as the engine of application state (HATEOAS), the client/server

interaction state is in the hypermedia they exchange
 // Roy Fielding, author of HTTP specification

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/Representational_state_transfer

Stateless … What state?

Application
State

Client
State

Client
Server

Our application will have state, so how is REST stateless?
- Answer: No client state!

- I.e no session on server
- Everything needed must be in request (also authorization, more later …)

Implementing REST

Example of practical interpretation of RESTful CRUD interface (create, read, update,
delete,... the basic operations on data)

1. All resources accessible with URLs (http://www.server.
com/application/orders)

2. We will get object representations as JSON (or other)
3. HTTP is stateless and self descriptive (simple unified interface: GET, POST,

PUT, DELETE, … the verbs used for operating on the resources)
4. Embed links in response (upcoming)

Implementing HATEOAS

GET /account/12345

HTTP/1.1 HTTP/1.1 200 OK
<?xml version="1.0"?>
<account>

<account_number>12345</account_number>
<balance currency="usd">100.00</balance>
<link rel="deposit" href="/account/12345/deposit" />
<link rel="withdraw" href="/account/12345/withdraw" />
<link rel="transfer" href="/account/12345/transfer" />
<link rel="close" href="/account/12345/close" />

</account>

HATEOAS means that hypertext should be used to find your way through the API.
- The GET response contains requested data and …
- … links to associated data.
- API is self exposing! The hypertext is actually telling us what is allowed and

what not
- Slide example is XML (we mostly use JSON, more to come …)

Testing some RESTful Services

Flickr (photo service, no API key)
http://api.flickr.com/services/feeds/photos_public.gne?
tags=flower&lang=en-us&format=atom (try change format)

Google Maps (no API key)
https://www.google.se/maps/@59.7009921,11.8938365,10
z?hl=sv (try change coordinates)

Many public RESTful services available.
- WebAPIs
- NOTE: Some APIs are

- … client side, i.e. possible to call with client side JavaScript, some are …
- … server side, must call from server side code (often involving OAuth …

a pain)
- … and some are both.

- Possibly need an API-key to send with requests (must get one from the
producer)

- Example: https://www.googleapis.com/geolocation/v1/geolocate?
key=AIzaSyCQKzCM8wvY…

- Possibly must register application
- If so need an account (Google, FaceBook, Twitter, Amazon, …) …
- Search for Developer pages

http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=en-us&format=atom
http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=en-us&format=atom
http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=en-us&format=atom
https://www.google.se/maps/@59.7009921,11.8938365,10z?hl=sv
https://www.google.se/maps/@59.7009921,11.8938365,10z?hl=sv
https://www.google.se/maps/@59.7009921,11.8938365,10z?hl=sv
https://en.wikipedia.org/wiki/Web_API
https://en.wikipedia.org/wiki/Web_API
https://en.wikipedia.org/wiki/Application_programming_interface_key

Web APIs

Many many APIs exposed as RESTful services
- Find your API

http://www.programmableweb.com/apis/directory
http://www.programmableweb.com/apis/directory

The RESTful Hype

REST in rather new, REST is very hyped right now … (seems to work for many cases,
but …)

- ... watch this … and this
- Still, .. we only use WS-REST

http://www.slideshare.net/pizak/rest-vs-ws-myths-facts-and-lies-352457
https://www.ria.ee/public/x_tee/Xroad-technical-factsheet-2014.pdf
http://www.slideshare.net/pizak/rest-vs-ws-myths-facts-and-lies-352457

