
JavaScript, Emulating Java,
the native APIs

WS Slides #2

Scripting Languages

"A scripting language is a programming language
that is used to manipulate, customise, and automate
the facilities of an existing system ...
... the existing system is said to provide a host
environment of objects and facilities, which
completes the capabilities of the scripting language."

Existing system for us: The browser

JavaScript

JavaScript is a client (browser) side*) scripting
language
- Allow authors to create highly interactive web pages (by
manipulating the DOM and more)
- Implementation (dialect) of the ECMAScript 5.1 specification

*) JS has started to go server side, …

https://developer.mozilla.org/en/docs/Web/JavaScript
https://developer.mozilla.org/en/docs/Web/JavaScript

Executing JavaScript

Script file(s) downloaded from server (cached)
at page request, typically

 <!-- In HTML Page (if many scripts, order matters !!) -->
 <head>

 <!-- Will download script -->
 <script type="text/javascript" src="js/myjavascript.js" />
 </head>

<body>
 ...

</body>

- All script elements are executed by the browser in found order (as the document is
loaded). Order matters!!!
- Normally only “event handling setup”-code executed during page load (after DOM
construction)
- Possibilities for “code on demand” (security)
- Possible to disallow scripting

JavaScript vs Java

Looks close to Java but ...
- Java and Javascript are similar like Car and Carpet are similar
- Still … syntax (C-languages) and basic statements if, for, … same or
similar

Language somewhat related to functional languages
- Heavy use of (anonymous) functions

http://www.crockford.com/javascript/little.html

JavaScript Strategy in Course

We’ll try to avoid any low level JS coding
- Specifically the native APIs
- We use a high level framework: AngularJS (by Google) and
possible jQuery (by J. Resig) if needed.
- Still need some understanding (background information)

JavaScript

JavaScript
APIs

AngularJS

jQuery

MyApp

Possible calls

Angular
depends on
JQuery

JS The Good Parts

JS The Awful Parts

Non exhaustive list ...
- Non-static typed, all type errors runtime (typical: Nothing
happens..!) Spelling!
- Global variables, introducing (using) an undeclared variable makes
it global (i.e. omitting the "var" keyword)
- All compilation units loaded into a common global namespace,
name clashes
- No modularization mechanisms (packages..)
- Program semantics very strange: semi-colon insertions, variable
reordering, equals, ...?!
- Many gotchas!! NetBeans will warn for some …

There’s a “strict” mode trying to reduce design flaws

http://www.badrit.com/blog/2014/1/15/javascript-equals-operator-pitfalls#.VAhOfJDLW0g
http://www.codeproject.com/Articles/182416/A-Collection-of-JavaScript-Gotchas

JS Language Overview

- Object-based scripting language (no classes)
- Object is a dynamic collection of properties each with zero or
more attributes
- Properties are containers that hold primitive values, objects or
functions
- A primitive value is a member of one of the following built-in
types: Undefined, Null, Boolean, Number (no int!!), and String
- An object is a member of the remaining built-in type Object
- A function is a callable object
- A function that is associated with an object via a property is a
method (like Java)

JS Built-in Objects

"ECMAScript defines a collection of built-in objects that round out
the definition of ECMAScript entities. These built-in objects include
the global object, the Object object, the Function object, the Array
object, the String object, the Boolean object, the Number object,
the Math object, the Date object, the RegExp object, the JSON
object, and the Error objects Error, EvalError, RangeError,
ReferenceError, SyntaxError, TypeError and URIError."
// ECMA Specification

- Note: Objects not classes, there are no classes in JS

JS Host Environment

"A web browser provides an ECMAScript host environment for
client-side computation including, for instance, objects that
represent windows, menus, pop-ups, dialog boxes, text areas,
anchors, frames, history, cookies, and input/output [host objects].
Further, the host environment provides a means to attach scripting
code to events such as change of focus, page and image loading,
unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed
page is a combination of user interface elements and fixed and
computed text and images. The scripting code is reactive to user
interaction and there is no need for a main program."
// ECMA Specification

In browser the window object = the global object

Objects

Object are mutable maps like; Map<Property, Value>
in Java
- Object structure possible change during lifetime
- No constructor
- Everything public
- Can contain sub-objects
- Objects manipulated via references like Java
- References have no types (untyped). Objects have
- Object literal (create object in line): { … } ← an objec
- Internal properties, pops up (not possible to manipulate with
language, but need understanding)

Functions

Functions are (close to) objects with the additional
capability of being callable
- Functions are first class members; Functions as
parameters/result, references to, callbacks
- Anonymous functions common
- Inner functions (function inside function)
- Functions may have properties (data..!)
- Functions as information hiding. Objects inside function not
accessible from outside. JS has function scope, not block scope
(can’t access inner parts of function)
- Has hidden property "arguments". Gives access to all supplied
arguments and more...
- If return ... in function, function will return (possible with value).
- If no explicit return, returns “undefined”

Function cont.

Call conventions same as Java (by value)
- Some primitives are like objects (boxed)!
- Passing in a function is different (although it's an object)?!
- Different invocation patterns (!), more to come...

Methods

A function as a property of an object is a method
- Methods, will belong to object, not shared between objects

var o = { // Start object literal
...
doIt: function() { // Method (reference to anon. function)
 return … ;
}

}; // End object literal

// Call
o.doIt();

Closures

“A closure is formed when one of those inner functions is made
accessible outside of the function in which it was contained, so that
it may be executed after the outer function has returned. At which
point it still has access to the local variables, parameters and inner
function declarations of its outer function. Those local variables,
parameter and function declarations (initially) have the values that
they had when the outer function returned and may be interacted
with by the inner function.”

More on Javascript Closures

Funny comment on web
“Closures are not hard to understand once the core concept is grokked. However, they are impossible to understand
by reading any academic papers or academically oriented information about them!”

http://www.jibbering.com/faq/notes/closures/

Prototype

All objects have an implicit reference to a "parent
object"
- This is the object prototype
- Prototype object used to share properties between objects
(remember; methods belong to individual object)
- Displayed in Chrome debugger as __proto__

The prototype chain
- All objects have a link to it's "parent", a chain of references. If
asking for some property not found in actual object, the prototype
chain is searched
- Final object in chain is Object object
- Possible to alter new children by assigning new values to the
prototype for some parent (old children not affected)

Constructor Function

Function used to create and initialize new objects in
conjunction with operator new
- Can't distinguish from normal function, except using leading
uppercase for name (an idiom, not enforced)
- Imagine a freestanding constructor (outside object)

A constructor function has a not hidden reference to
an automatically created unnamed prototype object
- This is the prototype property
- Accessed with NameOfContructorFunction.prototype
- The prototype objects has a reference back to constructor

Object Creation and Prototype

Using constructor function and new
"When a constructor creates an object, that object implicitly
references the constructor’s prototype property for the purpose of
resolving property references."

// ECMA Spec

An alternative to create objects (possible better) is Object.create(...)
(not used by us)

Object Creation with Constructor

MyCtor
(constructor

function)

 Prototype
Object

 Object
(created using new

and constructor
function)

 Object
(created using new

and constructor
function)

__proto__

MyCtor.prototype

Function
(built-in)

__proto__

 Object
(built-in)

__proto__

MyCtor.prototype.
constructor

Executing
Object o = new MyCtor();

__proto__ Unnamed,
automatically
created object

The “this” keyword

JavaScript “this” is different from Java
- In global scope this is the window object (the global object)
- The value of this in a function context is provided by the caller
and determined by the current form of a call expression (how the
function call is written syntactically!!!)
- this not statically bound (may vary)
- Complicated: We simplify by identifying fairly correct invocation
patterns ...

http://dmitrysoshnikov.com/ecmascript/chapter-3-this/

Invocation patterns for “this”

Global function invocation: In function this is the
global object

Method invocation: In method this is the object the
method belongs to

Constructor function invocation (in conjunction with
new) : In function this is the newly created object

Preserving “this”

Inner functions doesn’t share this with outer

To use this in inner function, have to store outer
before executing inner

function Outer() {
…
var me = this; // Store actual “this” for use in inner function
function Inner (){

// “this” changed, accessed “old this” value with me
}

}

Sometimes handled automatically by some higher level libraries,
jQuery, ...

Miscellaneous

Strings: “ ” or ‘ ‘

Comments as in Java /* */ and //

Declaring variables using var keyword (optional but use!)

// Forget var ends up in Global scope (even in functions)
 var a = { … }// a reference to object literal

Ending ';' optional but use!

Watch out for conversions and comparison, always use === for
comparison

Exceptionhandling …

Emulating Java

We use the JS "pseudo-classical" style + module
pattern to emulate classes

- Emulated class = constructor function (for object data) +
constructor function prototype holding shared methods

- Put "class" in matching file like Java (class name = file name)
- Mostly we use Angular but also possible need this

Pseudo-Classical JavaScript

// Emulate a class (this is in file person.js)
var Person = function(name){ // Constructor function
 // Set attributes here, "this" is the actual object!
 this.name = name;
};

Person.prototype = (function(){ // Shared by all objects
 // Public API here
 return { // Anonymous object
 setName : function(name){
 this.name = name; // "this" is the actual object
 },

 getName : function (){
 return this.name;
 }

}
})(); // Call function immediately (prototype will reference object)

Pseudo-Classical JavaScript cont.

// MUST use new else disaster (this bound to global object)
var p = new Person("Sara");

Now...
… p is a reference to the returned anonymous object with methods
setName and getName (previous slide)

// Call
var name = p.getName();

getName not found in p, so search prototype, method found! … call
it, “this” supplied by caller (the p object), so “this” is really the actual
object

The Native APIs

Very many (in various conditions)

Most important
- The DOM API, to dynamically change the DOM and CSS
properties (change user view)
- The Event API, for event driven applications
- The XMLHttpRequest, for asynchronous HTTP calls

Note: We don’t use any of. We use higher level APIs.
- This is just background information, more later …

http://www.w3.org/standards/techs/js#w3c_all

Native DOM API

JavaScript to interact with the DOM tree
- Find nodes
- Add, edit, remove nodes
- …
- The document property of a window points to the DOM for the
document loaded in that window (the tree root)

// Example native JS DOM API call. Avoid!
 var e = document.getElementById(...);

// Same as
var e = window.document.getElementById(...);

When talking HTML we say element when DOM tree we say node

Event Driven Web Application

“DOM … events allow event-driven programming languages like
JavaScript, JScript, ECMAScript, VBScript and Java to register
various event handlers/listeners on the element nodes inside a
DOM tree, e.g. HTML, XHTML, XUL and SVG documents.
Historically, like DOM, the event models used by various web
browsers had some significant differences. This caused
compatibility problems. To combat this, the event model was
standardized by the W3C in DOM Level 2.” //Wikipedia

HTML Events

Huge collection
- Hierarchy of APIs for event handling: DOM Level 0-N.
- Event handling, connecting listeners to elements, handling events
will be done from inside AngularJS, more to come…

// Typical event handling in AngularJS
// Register listener (callback function) for click event
$scope.listeners.doClick = function(evt) {
 // Event handling code here
 };

More to come...

http://en.wikipedia.org/wiki/DOM_events
http://en.wikipedia.org/wiki/DOM_events
http://www.w3.org/TR/DOM-Level-2-Events/events.html

Event Capturing and Bubbling

Some knowledge of HTML event capturing and
bubbling can possible be useful
- Possible to use same listener for all children of an element

http://www.w3.org/TR/DOM-Level-3-Events/#dom-event-architecture
http://www.w3.org/TR/DOM-Level-3-Events/#dom-event-architecture
http://www.w3.org/TR/DOM-Level-3-Events/#dom-event-architecture

JavaScript Object Notation, JSON

Text-based open standard designed for human-
readable data interchange
- Representations of JavaScript objects
- Language independent (but derived from JavaScript)
- Lightweight (compare XML)
- Normally automatic conversion from/to JSON /JavaScript object
in browser at request and response
- If not converted, use the below in client
 //Native

var obj = JSON.parse('{"name":"John"}');
// Have JSON (text) get an object (using JQuery API)

 var obj = $.parseJSON('{"name":"John"}');

- Often used as parameters, i.e. send an inline object

http://tools.ietf.org/html/rfc4627%20,http://www.json.org/

Example JSON

{

 "firstName": "John", // Note “ not ‘

 "lastName": "Smith",

 "age": 25,

 "address": {

 "streetAddress": "21 2nd Street",

 "city": "New York",

 "state": "NY",

 "postalCode": "10021" // integer 10021 also possible!

 },

 "phoneNumber": [

 {

 "type": "home",

 "number": "212 555-1234"

 },

 {

 "type": "fax",

 "number": "646 555-4567"

 }

]

}

XMLHttpRequest

API for asynchronous HTTP calls
- Aka “XHR” (possible to inspect in debuggers)

XMLHttpRequest + DOM API make it possible to
implement AJAX (Asynchronous JavaScript and XML)

“With Ajax, Web applications can send data to, and retrieve data from, a server
asynchronously (in the background) without interfering with the display and behavior of
the existing page”
// Wikipedia

Possible: Single page applications. Update page by
asynchronously retrieving JSON

Asynchronous Programming

JavaScript is single threaded, if long time call, GUI will
freeze
- Solution: Asynchronous calls. Will return immediately
- When operation finished where to return data (program has
continued)? Solution: Supply callback function
- If long call chains leads to very nested (messy) code
- Solution: Return object representing the future result (a promise).
Use object “inline”, gives flat code. Handled by Angular more to
come…

http://wiki.commonjs.org/wiki/Promises

Bookmarkability

Important for user to be able to bookmark pages
- Example: Paste URL into mail

If using AJAX the URL possible want change (single
page application)
- Problems with bookmarks, forward/backward, favorites
- Possible solution in HTML5, use URL hash mark (#) and History
API or hashchange event
- Angular will use hash mark

http://diveintohtml5.info/history.html
http://diveintohtml5.info/history.html
http://www.w3.org/TR/2010/WD-html5-20100304/history.html#event-hashchange
http://diveintohtml5.info/history.html

JavaScript Same Origin Policy

Security Issue
- A script can read only the properties of windows and documents
that have the same origin (i.e., that were loaded from the same host,
through the same port, and by the same protocol) as the script
itself.
- NOTE: Local files uses file:// not http://(possible to config. Chrome to accept)

- Untrustworthy script in one window could use DOM methods to
read the contents of documents in other browser windows, which
might contain private information.
- Poses particular problems for large websites with many servers

- JSONP, trick to circumvent restrictions
- CORS, mechanism to allow resources from different domains

http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://en.wikipedia.org/wiki/JSONP
http://www.w3.org/TR/cors/

Developing with JavaScript

Must have a JS debugger (most errors runtime)
- Chrome (Tools > Developer tools)
- In Firefox, addon Firebug (Tools menu). Installed in school

Possible to step code, inspect values etc.
- Debugging dynamically downloaded JS in Chrome debugger
needs tweak

//Last in file products.js
//@ products.js

