
JPA Mappings

JPA Slides #2

To bridge the OO-relational mismatch we map
between classes/objects and tables/rows and more
… i.e. ORM

We're using JPA 2.x as our ORM middleware
- Using annotations to define the mappings
- Also possible using XML mapping files, we don't …
- JPA defined as “framework” by Oracle (we call it middleware,
gives no structure to application)

Java and ORM

Mapping OO-model to Database

In general
- Package → Schema
- Class → Table
- Attribute → Column
- Associations → Relationships

Associations are tricky, more to come …

Note: The classes to map are normally in the core
model
- Not all classes in model should be persisted (we have a
persistence model, a submodel)

JPA Entity Class

An entity class is a Java class typically representing a
database table. Specification;
- @Entity and @Id annotation
- Non-private default constructor
- No public attributes
- Serializable
- No final, whatsoever!
- Inheritance ok (mixed non-entity and entity classes is ok)
- Must be listed in a “persistence unit” more later...

@Entity annotation on...
- Abstract class, ok
- Interface or Enum, no!

Default Mapping Rules

If no annotations except @Entity and @Id default
mapping rules applies

Basically
- Class mapped to single table. Table will have same name as class
but uppercase
- Attributes mapped to column names, uppercase
- JDBC rules for mapping simple Java types to database types

- int, Integer, ... byte[], Byte[], ...String, Data, Calendar, TimeStamp,any
ENUM, any Serializable.

- Collections mapped to extra table
- Relationships creates columns for fk in some of the involved
tables (possible extra (sometimes unnecessary) join tables)

http://www.tutorialspoint.com/jdbc/jdbc-data-types.htm

Customize Mapping

If not satisfied with default mappings use class, field
or method annotations. Annotations for;
- Table
- Columns
- Others

We give a few examples

Many more mapping examples

http://www.objectdb.com/api/java/jpa/annotations

Customize Class ->Table

Use @Table class annotation

// Other name for table (CUST instead of CUSTOMER)
@Entity
@Table(name="CUST", schema="RECORDS")
public class Customer { ... }

// Unique constraint for full row (i.e. no duplicates in rows)
@Entity
@Table(name="ALLOCATION", uniqueConstraints={
 @UniqueConstraint(columnNames={"CONSULT_ID", "PROJECT_ID"})
})

Customize Attribute -> Column

// Other name and restrict length
@Column(name="Desc", length = 50)
private String description;

// Must use on Date and Calendar
@Temporal(DATE)
protected java.util.Date endDate;

// Transient specifies that an attribute should not be persisted
// (possible a calculated value).
@Entity
public class User {

 …
@Transient ShoppingCart cart; //Don’t save cart

 …
}

Entity Class Identity

Entity class must have a id representing the database
table primary key
- For simplicity we use an attribute id of type Long
- Specify id with @Id

public myClass {
@Id
private Long id; // Will have pk-column ID in table

}

http://www.objectdb.com/java/jpa/entity/id

Generate the Primary key

Simplest is to let database generate the id value
- Specify using @GeneratedValue in conjunction with @Id
- If using generated id, never supply any id when creating entity
(constructor or other …)

// Generate pk’s 1, 2, 3, ….
@GeneratedValue(strategy=GenerationType.AUTO)
@Id
private long id;

The Id Problem

Entity classes should define equals-method (and
hashCode)
- Only significant value used should be the id

If letting database generate id, the object have no id
before really written to database

Can’t depend on object id before persisted.
- Will cause problems if not observant … can’t use some containers
(Set)

Collections and Enums

If class has a Collection or Map of primitive types
- Annotate with @ElementCollection, @CollectionTable (possible
FetchType.Lazy upcoming...)
- Will create extra table holding collection data
- If non-primitive... more to come...

If class has Enum
- Annotate with @Enumerated(EnumType.STRING)
- Will end up in same table

Embedded Objects

Embedded object depends on some entity class for it's identity (no
own identity, i.e. a value object, identifying relationship)

@Embeddable
public class Address { ... }

@Entity
public class Employee {
 @Embedded
 private Address address;
 ...
}

Ends up in same table (Employee)

Associations

A B

A B

A B

A B
1 *

1 1

1 *

1 1

A B1 1

A B
1 *

A B* 1

A B
* *

Unidirectional OK Bidirectional i.e.
mutual dependencies.
Avoid!

This one
possible
to fix

Classes A and B

Cardinality

Mapping Associations

Classes (objects) are connected with associations,
database tables with relationships

Mapping an association will result in relationships
between tables
- Not a perfect match … .associations have direction, relationships
not
- Relationships only have 1:N cardinality (the 1:1 cardinality must be
forced through UNIQUE constraint on foreign key)

RUNTIME: Associations = object references, relationships =
matching row id's (key's). Have to be careful!

Associations: UML vs Database

UML associations denotes a references in Java
- UML 1:1 says one object having a reference to another. But the id
of the object isn’t considered! It’s just some objects associated

But when working with databases the id’s are what's
count
- Database (ER) 1:1 says one table row is related to one unique row
from another table, not to any row (like splitting a table vertically).

Unidirectional 1:1 Mapping

A B
1 1

@Entity
class A {
 @OneToOne
 B b;
}

A

B

Join column,B_ID
(default name)

@Entity
class B{

}

If the exact identity of B is important (database 1:1) need to use @Column(unique=true) for
B_ID

Default so
not really
necessary

Unidirectional 1:* Mapping

A B
1 *

@Entity
class A {

}

@Entity
class B{
 @ManyToOne
 A a;
}

A B
1 *

A

B

Join column, B_FK (will be
added)

@Entity
class A {
 @OneToMany
 @JoinColumn(
name = B_FK)
 List b;
}

@Entity
class B{

}

Will end up
the same in
database

If not using
JoinColumn
extra table
created

OR

Bidirectional 1:* Mapping

A B
1 *

A

B

Join column, B_FK (will be
added)

@Entity
class A {
@OneToMany(mappedBy
= "a") List b;
}

@Entity
class B{
@ManyToOne
@JoinColumn(name =
"B_FK") A a ;

The owning
side (table
with foreign
keys)

The
inverse
side

Mapping *:*

Author Book
* *

Many to many transformed to … this!

class Author {
 Collection<Book> bs;
}

class Book{
 Collection<Author> as;
}

Author Book

1 *

Publication

* 1

@Entity
class Author {
}

@Entity
class Book {
}

@Entity
@Table(name="PUBLICATION", uniqueConstraints={
 @UniqueConstraint(columnNames={"AUTHOR_ID", "BOOK_ID"})
})
class Publication {

@ManyToOne
Author a;
@ManyToOne
Book b;

}

Optional
Will get extra
table

Fetching Strategies

When to load associated objects
- EAGER, when owner loaded
- LAZY, when code executed

Default (otherwise annotate)
- @OneToOne, EAGER
- @ManyToOne, EAGER
- @OneToMany, LAZY
- @ManyToMany, LAZY

// Example
@OneToMany(fetch=FetchType.EAGER)
List<OrderItems> oi;

Summary Association Mapping

SE best practices
- Limit number of associations
- Prefer unidirectional, review use cases to decide direction

If need to navigate in “other” (non existing) direction in
code have to search
- Probably best to let database search (i.e. use queries, upcoming)

Mapping Inheritance

Different strategies
- Single table for hierarchy (all super/sub-objects in same table)
- Joined strategy, many tables
- .. more...

//Superclass
@MappedSuperclass
public class Person … {

// Common code
}

//Subclass, everything will end up in table Employee
@Entity
public class Employee extends Person {
}

Warnings

If mappings “wrong” you will get (sometimes not easy
to understand) exceptions!
- If strange exceptions carefully review all mappings

Persistence Unit (PU) Revisited

As noted we have a config file persistence.xml
containing “named” PUs
- All entity classes must be listed in PU, if not exception, "not a
known entity type"
- All classes in PU must be collocated in same database
- Possible to specify table generation strategy

- None, no tables created (should exist)
- Create, will create when executing program
- Drop and Create, delete and create when executing program

- Transactional type for EM, always, Java Transaction API, JTA more
to come …

Persistence Unit Sample

NetBeans will generate!
<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/persistence" xmlns:xsi="
http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.jcp.
org/xml/ns/persistence http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name= "managing_pu" transaction-type=" JTA">
 <jta-data-source> jdbc/test</jta-data-source>
 <class>jpa.mgn.core.Author</class>
 <class>jpa.mgn.core.Book</class>
 <class>jpa.mgn.core.Publication</class>
 <class>jpa.mgn.core.Review</class>
 <exclude-unlisted-classes>true</exclude-unlisted-classes>
 <properties>
 <property name="javax.persistence.schema-generation.database.action" value="
create"/>
 </properties>
 </persistence-unit>
</persistence>

Entity classes

Validation

As noted: All layers should validate incoming data!

“Bean Validation constraints may be applied to
persistent entity classes, embeddable classes, and
mapped superclasses.”
- Constraints checked immediately after the PrePersist, PreUpdate,
and PreRemove lifecycle events, more to come …

The JPA @Column may also impose constraints

Bean Validation vs JPA Constraints

@NotNull is a Bean Validation annotation. It has nothing to do with
database constraints itself.

@Column(nullable = false) is the JPA way of declaring a column to
not accept null values

When to use?
- Need both to be safe … NotNull for application (control layer),
Column for database layer.

JPA and JAXB

Possible to have both @Entity and @XmlRootElement
on same class
- Get database data as XML directly … possible for REST
applications

Other way round

If you're a skilled database developer, start with
database and let NetBeans generate the mapped
entity classes but ...

 ... don't touch generated code! Separate

out!

