
Intro, Persistence, Object
Relational Mapping and JPA

JPA Slides #1

Persistence

Persistent object: Object that outlives the execution of
the program
- Have to store for later retrieval (next execution)

Many persistence mechanisms
- Flat files
- Serialization
- XML
- Different types of databases …
- ...we will use a relational database (de facto standard)

The OO-Relational Mismatch

Relational databases and object orientation doesn't fit!

Object orientation: Objects

Relational databases: Sets of tuples
- No objects, classes
- No inheritance, polymorphism, generics...

Major clash, the OO-relational mismatch
- Relational databases won't change, mathematical foundations...
- Unsolved problem, ...

Handling the Mismatch, Option 1

Surrender : I.e. don't use OO

Possible solution (good for massive reads)
- Example: Product Catalog to web
- Just use primitive types, String, int, ...
- Fastest possible solution
- Not a solution for complex cases

Handling the Mismatch, Option 2

Try to fix the mismatch
- Map between objects and tuples, object relational mapping,
ORM

No general best strategy
- Must know how database in going to be used
- Mostly reads? Mostly writes?
- Different strategies
- Very complex task to implement (we don’t)
- We use some middleware (glue layer)

http://www.agiledata.org/essays/mappingObjects.html

ORM Cases to Handle

Associations? Multiplicity! Inheritance? Generics?

Object graphs! Lazy fetching? Lazy object creation?
Caching? Concurrency? Transactions?...

Ad hoc searching
- Possible don't need objects (ex. statistics)

Should database or application do the work?
- Databases very efficient at searching/sorting … we prefer!

Java API's for Persistence

Java database connectivity, JDBC
- Low level API, no ORM (not used by us)
- Using embedded SQL strings as parameters
- JEE spec. makes JDBC mandatory

Java Data Objects, JDO
- Very (too?) general, relational database, object database , ...
- Not used in course, possible fading away…?

Java Persistence API, JPA 2.x
- Supports only relational databases
- Built on top of JDBC
- This will be our middleware (glue application and database)

Java Persistence API, JPA

“The Java Persistence API provides Java
developers with an object/relational mapping
facility for managing relational data in Java
applications.”

Java Persistence consists of four areas:
- The Java Persistence API, to handle persistent objects
- The Query language, to query database in an OO fashion
- The Java Persistence Criteria API, same as above by typesafe
- Object/relational mapping metadata, annotations

JPA and JDBC

JPA built on top of JDBC JDBC

We'll need a
JDBC Driver
(database
specific middle
ware and more).
Dependencies in
pom

JPA is here

Executing JPA Applications

Possible to use JPA in JEE and JSE environments

JSE, Tomcat or JUnit
- Have to supply many dependencies
- Have to handle a lot in application (more to code)

JEE, GlassFish, …
- Fewer dependencies
- Container will handle a lot. We use!

JPA Config Files

There will be (at least) 2 config files involved
- src/main/setup/glassfish-resources.xml, technical data for
the database, location, JDBC driver and much more (server
specific). Information is noted as a data source. Data sources
have names (like “jdbc/mydatasource” always leading jdbc,
also there’s an interface java.sql.DataSource)
- src/main/resources/META-INF/persistence.xml, containing
persistence units (PU). A PU defines how persistent objects
should be handled. A PU has a reference to a data source

Generated by NetBeans, possible some tweaking

JavaDB (Derby)

As noted in the crash course
- We’ll use JavaDB (aka Derby) a relational database bundled with
NetBeans!
- Create/drop databases from inside Netbeans
- Create/drop tables (all tables should belong to a "schema" APP)
- CRUD operations on table data from inside NetBeans (NOTE: Must
commit to make persistent, click small button in table heading)
- Run queries from Netbeans
- Sample database supplied (good for testing queries)

Databases stored as files in ~/.netbeans-derby directory
Possible to delete database by erasing files

http://db.apache.org/derby/manuals/index.html

