Networks and

 Distributed Systems
Olaf Landsiedel

Definition

- I believe you know what a network is...
- But, what is a Distributed System?
- Have you ever seen one?
- Have you ever used one?
- A Distributed System is characterized by?
- Multiple devices
- Connected by a network
- Cooperating on some task

Examples

One more Example

- A modern computer is a distributed system
- Multi-core CPU
- Multi-core GPU
- Actually
- Even a modern cell phone

Note

- Non computer-driven "distributed systems"
- Atoms
- Molecules
- Society
- Animals (ants, bees, ...)
- ...
- Not topic of our lectures

Distributed Systems vs. Networks

- Networking is worried about
- Sending a message from here to there
- Not what you do with the message
- Distributed Systems
- Assume:

There is a way to send messages

- Focus: How you build a system using those messages
- Teach you what things to do with a network

COURSES

Computer Systems and Networks

120 credits (MSc, 2 years)
 Distributed Systems Profile

https://www.chalmers.se/en/education/programmes/ masters-info/Pages/Computer-systems-and-networks.aspx

Programme Curriculum Career and Research Media News
Computer Systems and Networks
120 credits (MSc, 2 years)

Programme aim
As a student of this master's programme, you will develop a solid grasp of computer systems and networks through a broad, yet in depth, training experience in the field of Computer Science and Engineering.
You will acquire theoretical knowledge and engineering skills in:

- Parallel and Distributed Systems
- Computer Security and Dependability
- Computer Systems Engineering
- Communication Networks

Computer Systems and Networks 120 credits (MSc, 2 years) Distributed Systems Profile

Computer networks	Operating systems *	Computer security	Network security	Seminar in CSN	Elective	Thesis work
	Masterclass		Masterclass			
Fault-Tolerant Computer Systems	Computer Architecture	Distributed systems II	Parallel and dist.	Elective		
	Distributed systems I	Real-time systems	real time systems	Parallel Comp. Org. \& Design		
Autumn		Spring		Autumn		Spring

Also available as elective courses from other programs

Course Goals in a Nutshell

- Lectures: Teach you Distributed Systems
- What do they do?
- How do they work?
- Labs: Give you hands-on experience
- Feel the challenges
- Master the techniques
- Have some fun!
- Optional: you can pass without it

Will I learn something useful?

- We hope so!
- This our key goal
- From an email we got from a former student
- "[...] I'm [...] making a living out of building distributed systems, [...] rest assured I've been finding the contents of your course very useful. :)"
- Started working at Spotify
- We hope you will have a similar experience

More courses

- Distributed Systems:
- Distributed Systems, LP2, 7.5hec(hp), TDA596 (Chalmers), DIT240 (GU)
- Distributed Systems advanced (Distribuerade system fk.), LP3 - 7.5 hec (hp), TDA297 (CTH), DIT290 (GU)
- Project Courses
- DAT295 - Autonomous and Cooperative Vehicular Systems, Lp2, 7.5hec
- DAT300-ICT support for adaptiveness and security in the smart grid, LP4, 7.5hec
- Broader Field
- EDA387-Computer networks, LP1, 7.5 hec
- EDA343, EDA344, LEU061 Datakommunikation, LP1, LP3, LP4. 7.5 hec
- EDA491 - Network security, LP4, 7.5 hec

HISTORY

History

- In the examples
- Many different distributed systems
- How did we get here
- Where do all these DSs come from?
- What is the trend?
- Will their number increase even more?

1943

Thomas J. Watson, 1943; Chairman and CEO of International Business Machines (IBM)

1969

ARPANET begins...with a deployment at UCLA,
Stanford, UCSB, and Utah (one computer per site)

1969, 29 Oct, 22:30:
First data on the Internet

First full-login:
about one hour later

1969, 29 Oct, 22:30:
First data on the Internet

Lessons Learned:

1. First words/letters on the Internet: "lo"
2. Not many things in the Internet work on the first try

Pre-me (<1979)
Pre-you (<1989)
1989
1990
1991
1992
1993

(PLEASE NOTE THAT WHLLE THIS MAP SHOWS THE HOST POPULATION OF THE NE TWORK ACCOROING TO THE BES
NAMES SHOWN ARE IMP NAMES. NOT INECESSARICY) HOST NAMES

Internet 2007 (just the backbone)

1971

$\left\{\begin{array}{l}\text { - Pre-me (<1979) } \\ \text { - Pre-you (<1989) } \\ -1989 \\ -1990 \\ -1991 \\ -1992 \\ 1993 \\ 1994 \\ \\ \hline\end{array}\right.$

1974

TCP / IP defined by Vint Cerf \& Bob Kahn

1984

- Pre-me (<1979)
- Pre-you (<1989)
-1989
1990
-1991
1992
1993
1994

1989 - The Web Emerges

Tim Berners-Lee writes "Information Management: A proposal" at CERN

Pre-me (<1979)
Pre-you (<1989)
1989
1990
1991
1992
1993
1994

1990

First browser developed at CERN

1991

Mosaic became the first graphical browser

CERN agrees to allow public use of web protocol royalty-free!

Pre-me (<1979)
Pre-you (<1989)
1989
1990
1991
1992
1993
1994
\rightarrow Mosaic goes commercial (later becomes Netscape)
\rightarrow Traditional dialups (AOL, CompuServe, Prodigy) begin to sell Internet access.

"Jerry' s Guide to the world wide web" started ... it eventually became Yahoo

1995+

Amazon arrives and the commercialization of the web begins

Today

- How many connected devices do you have?
- Many!
- Desktop
- Laptop
- (Smart)phone
- Tablet
- TV / gaming console
- ...

Summary: A bit of History

PC age (80 's \& 90's): One computer for each, partially networked

Tomorrow?

Today

Tomorrow?

Tomorrow? Networked Society!

- Distributed Systems touch all aspects of daily life!
- Integral building block for our networked society
- Strongly increasing in numbers
— Result: Very good topic to study ;-)

COURSE TOPICS

Course Topics: Motivation

- Assume: your task is to build
- Facebook or
- Amazon or
- just a simple web application
- What challenges do you face?

The Eight Fallacies of Distributed Systems

- The network is reliable
- Latency is zero
- Bandwidth is infinite
- The network is secure
- Topology doesn't change
- There is one administrator
- Transport cost is zero
- The network is homogeneous

Mechanisms

- This course
- Mechanisms to deal with these challenges
- Generic mechanisms
- Not bound to the Internet
- But: Examples mostly Internet bound
- Easier to understand for most students
- Compared to power grids, cars, ...

Course Content: Mechanisms

- Architectures \& Processes
- Mutual exclusion \& Election
- Naming
- Clocks and Time
- Consistency \& replication
- Fault tolerance

Computer Systems and Networks 120 credits (MSc, 2 years) Distributed Systems Profile

Computer networks	Operating systems *	Computer security	Network security	Seminar in CSN	Elective	Thesis work
	Masterclass		Masterclass			
Fault-Tolerant Computer Systems	Computer Architecture	Distributed systems II	Parallel and dist.	Elective		
	Distributed systems I	Real-time systems	real time systems	Parallel Comp. Org. \& Design		
Autumn		Spring		Autumn		Spring

Also available as elective courses from other programs

Questions

