Software Technology

Magnus Myreen

(Using material from David Sands’ presentation from 2016)

IMUCHITEST

o 40

-

J
i 9

= .

~ “...malfunction that caused
the vehicle to accelerate
- on its own.”

\EXCLUSIVE
sindesn | TOYOTA INVESTIGATION -}\

Cooper 360} Engineering memo suggests electronic problem in prototype car

CHP Officer, Family Killed in Crash

Al911 calllmade minutes before the accident said the car's accelerator v

L I/

By Rory Devine, Mari Payton and R. Stickney | Tuesday, Sep 1, 2009

View Gommenta 0 | Emall | Prin b SAN DIEGO

Source: http://www.nbcsandiego.com/news/local/CHP-Officer-Family-Killed-in-Crash-56629472.html

“Saylor”
28 Aug '09

An image taken from the air shows the vehicle resting in the brush just off the road.

2010

Over 6000 complaints of unintended
acceleration

US Congress instigates NASA investigation

Carnegie Mellon

NASA Conclusions
 NASA didn’t find a “smoking gun”

« Tight timeline & limited information [Bookout 2013-10-14AM 39:18-40:8]
« Did not exonerate system

Proof for the hypothesis that the ETCS-1 caused the large throttle opening UAs as described in
submitted VOQs could not be found with the hardware and software testing performed.

Because proof that the ETCS-1 caused the reported UAs was not found does not mean it could
not OCClllf However, the testing and analysis described in this report did not find that TMC
ETCS-1 electronics are a likely cause of large throttle openings as described in the VOQs.

[NASA UA Report. Executive Summary]|
« But, U.S. Transportation Secretary Ray LaHood said,
“We enlisted the best and brightest engineers to study Toyota’s
electronics systems, and the verdict is in. There is
no electronic-based cause for unintended high-speed
acceleration in Toyotas."

Electrical & Computer http://www.nhtsa.gov/PR/DOT-16-11

) ENGNERRING 9

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license. <

AUTOMOTIVE

News & Analysis

Toyota Case: Single Bit Flip That |

Killed
Junko Yoshida e0e

14 saves
10/25/2013 03:35 PM EDT LOGIN TO RATE

104 comments

During the trial, embedded systems experts who reviewed Toyota's
electronic throttle source code testified that they found Toyota's
source code defective, and that it contains bugs -- including bugs
that can cause unintended acceleration.

"We've demonstrated how as little as a single bit flip can cause the
driver to lose control of the engine speed in real cars due to
software malfunction that is not reliably detected by any fail-safe,"
Michael Barr, CTO and co-founder of Barr Group, told us in an
exclusive interview. Barr served as an expert witness in this case.

Stack overflow and software bugs led to memory corruption, he
said. And it turns out that the crux of the issue was these memory
corruptions, which acted "like ricocheting bullets."

Bugs per line of code?

SOFTWARE SIZE (MILLION LINES OF CODE)

Source: NASA, IEEE, Wired, Boeing, Microsoft, Linux Foundation, Ohioh

Modern High-end car
Facebook

Windows Vista |
Large Hadron Collider “
Boeing 787 NN

Android |G

Google Chrome [}
Linux Kernel 2.6.0 [l

Mars Curiosity Rover [}
Hubble Space Telescope [
F-22 Raptor [

Space Shuttle |
0 10 20 30 40 50 60 70

O eoecsceccacccamcce cooe oo emmmme -

o

co
o
o
o
p—t

Concurrent Programming

Natural programming model in
* embedded systems

* operating systems

* GUIs

But it is easy to get wrong!

Sequential program

int counter = 0;

for(int 1i=0; 1<1000000;i++) {
counter++;
}

Concurrent Program

int counter = 0;

for(int i=0; i1<1000000;i++) { for(int i=0; i1<1000000;i++) {
counter++; counter++;

} }

Demo

class Race implements Runnable {
int counter = 0;

public void run() {
for(int i=0; i<1000000;i++) { counter++; }
}

public static void main(String[] args) {
try {

Race r = new Race();
Thread A = new Thread(r);
[Thread B = new Thread(r);
A.start(); B.start(); // Start both threads
A.join(); B.join(); // Wait for them to finish
System.out.println("Final counter: " + r.counter);

}
} catch (Exception e) { }

Thread A

Thread B

Integer

17
A

read

17

Data Race

[- increment -*

17+1 = 18
rincrement}

17 17+1 = 18

A

read write

I v
18
>

Time

write

18

Learn Morel!

Concurrent Programming
TDA383/DIT390 LP1, LP3

Testing, Debugging, and Verification
TDA567/DIT082, LP2

Bugs might make
things go wrong

will
Bugs might make
things go wrong

W ———

o

il SECURITY WiLL

FAIL

FAILBLOG.ORG

No bugs = Secure?

No bugs = Secure?

Does the software treat our sensitive data in an
appropriate way?

What Information Flow Controls do
we want?

» Confidentiality, Privacy

— Information about sensitive data cannot be
deduced by observing public channels

* Integrity

— Untrusted data should not influence the
values sent on trusted channels

* Erasure
— information is no longer available after use

Our Chief Weapon

https://www.youtube.com/watch?v=Nf YAMbUCLY &t=15

Our Chief Weapon

Static Analysis

return p;

}

throw new NoSuchElementException();

E
o " l
-
.
.
-
B
.
)
3
.
-
.

Our Chief Weapon

Our Chief Weapons

Transformation

Our Chief Weapons

Our Chief Weapons

Libraries

Our Chief Weapons

.]
New Programming

Languages

Transformation

Static Analysis
Monitoring

I PROGCRAMMER

Login Register Edit Profile Chang
Home >> News >> Languages >>

Main Menu

Home

Book Reviews

Book Watch

News

Projects

The Core

Babbage's Bag

History

Swift's Spreadsheets
The Stone Tapes
Professional Programmer
eBooks

Programmer Puzzles
Bargain Computer Books
CodeBin

| Programmer Weekly

Paragon - a programming language for
security

Written by Kay Ewbank
Friday, 02 December 2011

A new programming language has been devised with the
objective of plugging information leaks in software.

As many high profile stories of hackers obtaining information
due to data leaks shows, it's not easy to make sure your
application keeps its data safe. Researchers at the University of
Gothenburg have developed a language that is designed to do
the checks for you while you’re writing your app

* Paragon - a programming language for
security

Written by Kay Ewbank
Friday, 02 December 2011

’ A new programming language has been devised with the
objective of plugging information leaks in software.

As many high profile stories of hackers obtaining information
due to data leaks shows, it's not easy to make sure your
application keeps its data safe. Researchers at the University of
Gothenburg have developed a language that is designed to do
the checks for you while you’re writing your app

4 -

. o

The alternative, developed by Niklas Broberg at the University
of Gothenburg is called Paragon, and the techniques used by

the programming language are shown in his thesis "Practical,

Flexible Programming with Information Flow Control".

“The main strength of Paragon is its ability to automatically
identify potential information leaks while the program is being
developed,”

says Niklas Broberg.

——

New programming language to
plug information leaks in
software

NEWS: NC

The curre
individua
have acc(
the code
Broberg «
programi
informati

Paragon identifies potential information leaks while the program
is being written

As a solution to these problems, Niklas Broberg
has developed the programming language
Paragon. The methodology is presented in his
thesis "Practical, Flexible Programming with
Information Flow Control" which was written in
August 2011.

“The main strength of Paragon is its ability to
automatically identify potential information
leaks while the program is being developed,”
says Niklas Broberg. "Paragon is an extension
of the commonly-used programming language
Java and has been designed to be easy to use. A programmer will easily be
able to add my specifications to his or her Java program, thus benefiting
from the strong security guarantees that the language provides.”

What do we need to achieve this?

Deep understanding of programming language
design and implementation

Where to start?

Programming Language Technology
LP2 DAT151/DIT230

..and more

 Compiler Construction TDA283/DIT300, LP4

* Language-based Security TDA602/DIT103, LP3

Concurrent programming

Finite Automata Theory
and Formal Languages

Testing, Debugging &
Verification

Batchelor’s level

Also:

Language-Based Security
Compiler Construction

Programming Language
Technology

Software Engineering
using Formal Methods

Master’s level

... anh error in java.uti

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 40
at java.util.TimSort.pushRun(TimSort.java:413)
at java.util.TimSort.sort(TimSort.java:240)

at java.util.Arrays.sort(Arrays.java:1438)

at TestTimSort.main(TestTimSort.java:18)

... anh error in java.uti

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 40
at java.util.TimSort.pushRun(TimSort.java:413)
at java.util.TimSort.sort(TimSort.java:240)

at java.util.Arrays.sort(Arrays.java:1438)

at TestTimSort.main(TestTimSort.java:18)

Proving that Android’s, Java’'s and
Python's sorting algorithm is broken (and
showing how to fix it)

(® February 24,2015 @ Envisage Written by Stijn de Gouw. & Ss

http://www.envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-
broken-and-how-to-fix-it/

The KeY project

* KeY lets you specify the
desired behaviour of your
program in the well-known
specification language JML,
and helps you prove that your
programs conforms to its
specification. That way, you
did not only show that your
program behaves as expected
for some set of test values -
you proved that it works
correctly for all possible
values!

* Wolfgang Ahrendt (Chalmers)
and others

A brief demo of KeY

https://www.key-project.org/

KEEP
CALM

IT IS

DEMO
TIME

Trusting the compiler

When finding a bug, we go to great lengths to find it in our own
code.
@ Most programmers trust the compiler to generate correct code

@ The most important task of the compiler is to generate correct
code

4
k Maybe it is worth the cost!)

Cost reduction?

Establishing Compiler Correctness

Alternatives

@ Proving the correctness of a compiler is prohibitively expensive
(however, see the CompCert project)

° Tes:cing is the only viable option
/\
(... but with testing you never know you caught all bugs!)

v

All (unverified) compilers have bugs

“ Every compiler we tested was found to
crash and also to silently generate
wrong code when presented with valid input.”

PLDI'11

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

“[The verified part of] CompCert is the only compiler
we have tested for which Csmith cannot find wrong-code

errors. This is not for lack of trying: we have devoted
about six CPU-years to the task.”

of our bug-hunting stud.y. Our ﬁrst
f the art in compiler testing. : Comie

oners roerams that cover a large subset of C while avq1d1 ;)0’ ih

generates Prograii? T e a hehaviors that would destroy its abIity

We create t a ral domi: e(l test-case enerator that sup-
[d Csml h7 ndomiz g

Project lead: Magnus ™

Myreen
_ (now at Chalmers)

CakeML :

Ramana Kumar * 1

Abstract
We have developed and mechamca“y verified 1, system called
CakeML, which supports @ substantid sub of Standard

a breadth of topics including lexing, parsing type checking, in-
cremental and dynamic compilation garbage collection, arbitrary-
recision arithmetiC, and compiler bootstrapping.
Our contributions are fwofo'-rrw ppmeuply 1D
ing a system that 18 end—to—end verified, demonstrating that each
' ~¢ ench 2 yerification effort can in pract'tce
2 nat none of the pieces rely on any
+~ino novel ap-

Magnus O- Myreen

Scaling up...

Verified lmp\ementaﬁon of ML

Michael Norrish 2

University of Cambridge UK
¥

1CTA, Australia

, University of Kent, UK

1. Introduction

The last decade has geen a Strong interest 0 verified compilation;
and there have been s'tgniﬁcant, high—proﬁ\e results, many based

~tion of that

First boot
strappin
formally verified coﬁw?icIZr

TactoeTs o

S
" 1ad CakeML, and LIS &S0 oo |

> & M, and OCaml. BY T n
M- 27 ~hine code along”

... and the programs
we actually care about:

... and the programs
we actually care about:

(11 B]
-

& Dave Sands
J 12 hours ago with |Raul Pardo|at{Chalmers Pubj- @

Having some beers at the pub

Like - Comment - Share

g Devdatt and 20 people like this.

Gerardo Schneider Huh? Raul is supposed to be working on tomorrow's
presentation at FMPriv

Like - Reply - ¢ 15 - 5 mins

&

Write a comment ...

HERE'S HAW 70 [5F
(BN
>

N=4)

GENERATION

PRIVACY POLICIES

S‘ Raul Pardo

—A_A -

b ol 4

My superv

isor cannot see my posts from
20:00 to 8:00

Where to start?

TDA293 / DIT270

Software Engineering using Formal Methods

(DAT060 / DIT201 Logic in computer science)
(DAT140 / DIT232 Types for Programs and Proofs)

Concurrent programming

Finite Automata Theory
and Formal Languages

Testing, Debugging &
Verification

Batchelor’s level

Also:

Language-Based Security
Compiler Construction

Programming Language
Technology

Software Engineering
using Formal Methods

Master’s level

