
Repa And A Tutorial

Marcus Lönnberg
marlon@student.chalmers.se

Karl Schmidt
karsch@student.chalmers.se

May 4, 2012

Note that this tutorial is for Repa 2.1.1.5 and Repa-io 2.2.0.1.

1 Repa and an introduction

Repa, which stands for REgular PArallel arrays, is a Haskell library that
gives parallelised combinators for array operators. That sounds quite boring,
but the gist of it is that Repa lets the user manipulate array data with free
parallelism. This tutorial aims to give a (mercifully short) introduction to
the library and then get into the meat of things with an extensive example.

Before we get to aforemention meat we need to cover some basics on
arrays, in general and in Repa.

2 Repa and arrays, shapes & indexes

Matrices in the mathematical sense generally have some underlying dimen-
sion: 3× 5× 6 for a 3-dimensional matrix of 90 cells with width 3, height 5
and depth 6, for instance. It would be quite practical if, when working with
a matrix in a programming language, this information was expressed in the
type of a matrix.

The shape type in Repa is an attempt to just that. The extent of and
positions in a matrix are both represented by a type class Shape. The usual
instance of Shape in Repa is a snoc list – the cons list’s slightly backward
cousin – where, for instance, a 3×2 matrix will have the shape (Z :. 3 :.

2). When generating a matrix one provides its shape, its initial elements
and generally some type information as not all types can be stored in a Repa
array. For instance we might have a program that starts

import Data.Array.Repa as R

main = do

let xs = fromList (Z :. 2 :. 2 :: DIM2) [0..(3::Int)]

Here we define xs to be a 2x2 array with xs =
0 1
2 3

1

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

Apart from fromList there are also the generators fromFunction and
fromVector.

Doing a lookup on an array in Repa looks very much like doing a lookup
on a normal Data.Array. xs!pos gives you the element at pos for both
types. In Data.Array you lookup an index and pos is of the Ix class used
in the array. In Repa pos is instead an instance of the Shape type used in
the array. We can expand the previous example with

import Data.Array.Repa as R

main = do

let xs = fromList (Z :. 2 :. 2 :: DIM2) [0..(3::Int)]

putStrLn $ show $ xs ! (Z :. 1 :. 1)

This prints 3. Note that arrays in Repa start from 0; looking up (Z :.

2 :. 2) would give you a runtime error stating that the index is out of
bounds. We can also try to run

import Data.Array.Repa as R

main = do

let xs = fromList (Z :. 2 :. 2 :: DIM2) [0..(3::Int)]

putStrLn $ show $ xs ! (Z :. -1 :. 5)

This prints 3 again! How? Repa’s arrays are internally just 1-dimensional
Data.Vector:s. Lookups are simply converted to the equivalent 1d vector
lookup and as long as you’re still within the bounds of the backing vector
they’re perfectly allowed. Be careful!

This all doesn’t look terribly useful, but the meat of Repa lies in its
automatically parallel traversal and combinator operations. These are a bit
complicated to grok separately, so we’ll write a decently complicated sample
application to demonstrate.

3 Repa and a sequence of complex numbers

For any complex number c we can define the following sequence, which is
probably familiar to some people

z0 = 0

zn = zn−1
2 + c

This sequence will be unique for each c and its properties vary. For
instance, with c = 0 we get a sequence that is always 0. With c = 2 we
get z0 = 0, z1 = 2, z2 = 6, z3 = 38, z4 = 1446, With c = i we get
z0 = 0, z1 = i, z2 = −1 + i, z3 = −i, z4 = −1 + i, One sequence was
constant, one grew very quickly and one quickly started to repeat. We’d
quite like to see how these sequences behave for a few million different values
of c.

2

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

This problem is naturally parallel: if c1 6= c2 then calculations on the
sequence for c1 are not useful for and do not affect calculations for c2 in any
way. We can calculate them completely independently, which Repa is good
at.

Another thing is that a million is a decently large number. We’ll need
is some way of visualizing our data. Repa kindly provides several ways of
outputting array data as images, which is another thing we’ll be looking
into.

3.1 Some preliminaries

Before we can get to Repa we’ll need some complex value arithmetic. Haskell
has the Data.Complex module with everything we need – but, unfortu-
nately, that type isn’t storable in Repa arrays. Tuples, on the other hand,
are. So, let’s define basic complex value arithmetic using 2-tuples:

--Cannot use Data.Complex in Repa, so encode as tuple (Real, Imag)

type Complex = (Double,Double)

-- Multiplication

{-# INLINE mul #-}

mul :: Complex → Complex → Complex

mul (r1,i1) (r2,i2) = (real, imag)

where real = r1∗r2 - i1∗i2
imag = i1∗r2 + i2∗r1

-- Addition

{-# INLINE add #-}

add :: Complex → Complex → Complex

add (r1,i1) (r2,i2) = (r1+r2, i1+i2)

-- Square

{-# INLINE sq #-}

sq :: Complex → Complex

sq (r,i) = (r∗r - i∗i, 2∗r∗i)

-- Square of the 2-norm

{-# INLINE normSq #-}

normSq :: Complex → Double

normSq (r,i) = (r∗r + i∗i)

-- 2-norm

{-# INLINE norm #-}

norm :: Complex → Double

norm = sqrt ◦ normSq

The inline pragmas are GHC compiler directives that force GHC to emit
the code for the function where it is being called. Normally this is done

3

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

automatically through a code size heuristic that tries to balance the benefit
of inlining against program size, however with Repa it is critical for per-
formance that array element operations are always inlined and using the
pragma is a good habit to have.

3.2 Generating and displaying data

Next, we’d like to get some of these complex numbers into a Repa array.
A good, simple idea seems to be generating a grid of values on some axis-
aligned rectangular region. In Repa this would take the form of an Array

DIM2 Complex, that is an array with a 2D shape storing instances of our
type Complex.

A function that does so is

-- Generate a region of the complex plane as a Repa array.

-- Takes array dimension and bounding values for the region.

complexPlaneSegment :: DIM2 → (Double,Double) → (Double,Double) →
Array DIM2 Complex

complexPlaneSegment (Z :. x :. y) (rmin,rmax) (imin,imax) =
fromList (Z :. x :. y) ris

where rstep = (rmax-rmin) / (fromIntegral x - 1)

istep = (imax-imin) / (fromIntegral y - 1)

reals = take x $ iterate (+rstep) rmin

imags = take y $ iterate (+istep) imin

ris = [(r,i) | r ← reals, i ← imags]

Here complexPlaneSegment takes 3 arguments: a 2D Shape specifying
the extent of the grid, for instance (Z :. 640 :. 480) for 640 points in
the x direction and 480 in y. The other two are bounding values for the
real and imaginary parts, respectively. Generating the array data is now a
matter of generating the set of discrete reals and imags that are on the
grid lines and columns and combining them with a list comprehension to
pairs – our Complex type.

To make sure this worked alright we’d like to see what our data looks
like, and not as a printout of numbers in the terminal. A very handy func-
tion here is writeMatrixToGreyscaleBMP :: FilePath -> Array DIM2

a -> IO () from the module Data.Array.Repa.IO.BMP. This takes a file
path and any Repa 2D array of a (fractional) numeric type and outputs a
greyscale BMP. The data is automatically scaled so that 0 (and lower) is
black and the largest number in the array is white. Unfortunately, we don’t
have a fractional numeric type – we have the Complex tuple.

However, we do have the norm :: Complex -> Double function to con-
vert our array values to something useful! To do this sort of batch conversion
Repa provides a map :: (a -> b) -> Array sh a -> Array sh b func-
tion for arrays that simply runs its first argument on every element of its
second argument. This function, like many others, is automatically parallel

4

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

– perhaps not very useful here but there are more of these coming. Let’s try
to combine what we have.

import Prelude as P

import Data.Array.Repa as R

import Data.Array.Repa.IO.BMP as R

-- Put complexPlaneSegment and the complex math stuff here!

main = do

let cs = complexPlaneSegment (Z :. 100 :. 100) (-2,2) (-2,2)

let norms = R.map norm cs

writeMatrixToGreyscaleBMP ("repa_and_my_first_image.bmp") norms

Figure 1: Your bitmap

Look in your working folder and you should
have a lovely little .bmp that looks just like fig. 1!
Bask in how the distance from the origin actually
increases with the distance from the origin!

Note also that the Repa map-function is not
the same as that from the prelude. We needed to
specify which map we meant to use. This is the case
for several functions in Repa and why the package
is usually imported under some handy abbreviated
name or the conflicting functions from the Prelude
hidden.

3.3 Generating and visualizing the se-
quence

Alright, we have a bunch of data representing complex numbers. Time to
generate our numeric sequence! Recall that the update rule was

z0 = 0

zn = z2n−1 + c

meaning that to get the next step we need the preceding step and the
constant c. In Repa terms, to generate the array representing the next
step we need the array for the previous step and an array of c:s. For the
latter we have a pretty good starting point – an axis-aligned grid from
complexPlaneSegment. We can also note that since z20 = 02 = 0 it is always
the case that z1 = c. Since the z0s aren’t very interesting we can use our
grid as the first element of the sequence and the constant parameter.

So, how do we generate the next array? We would like to essentially
say z nplus1s = nextIteration cs z ns for suitable arrays z ns and cs,
which certainly looks promising, but to do this we need some operation that

5

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

combines two arrays into one new array. Repa actually provides a number
of these and we can make do with the simplest one: zipWith. The Repa
version has type zipWith :: (a -> b -> c) -> Array sh a -> Array

sh b -> Array sh c – it takes a function that combines elements and uses
it to combine two arrays. It is very similar to the one for lists but it is
not the same function and you need to specify which one you mean. Here
our update function will simply be the update rule for our sequence, so lets
encode that.

-- The update rule for our Complex sequence

-- Again, we want this to be used in parallel so force inlining!

{-# INLINE update #-}

update :: Complex → Complex → Complex

update c z_n = sq z_n ‘add‘ c

-- Generating a new iteration

nextIteration :: Array DIM2 Complex →
Array DIM2 Complex →
Array DIM2 Complex

nextIteration cs z_ns = force2 $ R.zipWith update cs z_ns

Admirably straight-forward, however we added this strange force2 func-
tion in there. force2, which is a version of it’s more general brother force
for 2-dimensional arrays, is essentially the command that tells Repa to chunk
and evaluate this thing now. Before you put in force, nothing parallel hap-
pens. Note that this is not forcing strictness – that’s another matter and
we’ll get to it later – but simply a that when the force expression is eval-
uated there is to be parallelism. Internally this is handled as a coercion
from a “Delayed” array type to a “Manifest” array type, which is the sort of
detail you shouldn’t need to worry about: feel free to treat force as a magic
keyword to make zipWith, map and other full-array operations go faster.

Now then, let’s try to iterate a couple of times and see what we get

import Prelude as P

import Data.Array.Repa as R

import Data.Array.Repa.IO.BMP as R

-- All our helper functions go here!

main = do

-- Create an initial grid

let cs = complexPlaneSegment (Z :. 200 :. 200) (-2,2) (-2,2)

-- Iteratively generate a bunch of number sequence arrays

-- Take the last one

let iter = 4

let zs = last $ take iter $ iterate (nextIteration cs) cs

let norms = force2 $ R.map norm zs

6

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

-- Write to file

writeMatrixToGreyscaleBMP

("iteration_" P.++ show iter P.++ ".bmp")

norms

Figure 2: Bitmap #2!

And the end result is ...
Well, not very informative. What happened?

Well, as noted initially our sequence will grow very,
very fast for some numbers. Detail anywhere else
just goes poof; indeed most results will become NaN
in short order. We want to clamp the display to
some maximum threshold on the norm. As we
cheat with foreknowledge, we know that any se-
quence that hits a member with a norm larger than
2 will eventually diverge to infinity, so let’s go with
that for our clamp.

Also, generating one image at a time was an-
noying, so let’s try to batch that.

import Prelude as P

import Data.Array.Repa as R

import Data.Array.Repa.IO.BMP as R

import Control.Monad

-- Clamp a value to an upper bound

{-# INLINE clamp #-}

clamp :: Double → Double → Double

clamp thresh x = if abs x < thresh then x else thresh

main = do

-- Create an initial grid with the same old functions

let cs = complexPlaneSegment (Z :. 300 :. 200) (-3,3) (-2,2)

-- Iteratively generate number sequence arrays as before

let iter = 12

let thresh = 2

let zss = take iter $ iterate (nextIteration cs) cs

-- Normalize _and clamp_

let normss = P.map (force2 ◦ R.map (clamp thresh ◦ norm)) zss

-- Write all to file

forM_ [0..length normss-1] $

λi → writeMatrixToGreyscaleBMP

("iteration_" P.++ show i P.++ ".bmp")

(normss!!i)

This program will do a sequence of 12 iterations and we get the images
in figure 3

7

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

(a) iteration 0 (b) iteration 1 (c) iteration 2

(d) iteration 3 (e) iteration 4 (f) iteration 5

(g) iteration 6 (h) iteration 7 (i) iteration 8

(j) iteration 9 (k) iteration 10 (l) iteration 11

Figure 3: Norms in the first 12 iterations, whiteout threshold of 2

8

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

This is, and we do not use this word lightly, pretty boss. We note that
there is a (or possibly several – whether or not this is a connected set is
an open question) region of starting values that doesn’t diverge to infinity
and that region looks ... really weird. The region is a fractal, called the
Mandelbrot Set after Benôıt Mandelbrot who was the first to find it (and
render it, in the late 70s. He did not use Repa).

It’s also oriented oddly, if you know what this set usually looks like. The
real axis is vertically aligned here and the imaginary is horizontal. Whoops,
turns out writeMatrixToGreyscaleBMP doesn’t agree with our matrix ori-
entation. Fortunately there is a transpose function in Repa for 2D matrices,
so we can fix this. We could do so at any point in the pipeline from gener-
ating the data on up, but one approach is to keep the data model as is and
just change the write to file code from

-- Write all to file

forM_ [0..length normss-1] $

λi → writeMatrixToGreyscaleBMP

("iteration_" P.++ show i P.++ ".bmp")

(normss!!i)

to

-- Write to file

forM_ [0..length normss-1] $

λi → writeMatrixToGreyscaleBMP

("iteration_" P.++ show i P.++ ".bmp")

(transpose (normss!!i))

and now the axes are swapped on drawing. Crisis averted.
Let’s also take the opportunity to do some code cleanup. We’ve coded

the image size and region as magic constants, but of course we have access
to the usual Haskell tools for taking command line arguments. A slightly
more flexible version of the main function might be

import System.Environment

main = do

-- get command line argument list

args ← getArgs

-- pic size, iters

let [xsize, ysize, iter] = P.map read $ take 3 args

-- threshold, rendering area and zoom factor

let [thresh, rmid, imid, zoom] = P.map read $ drop 3 args

-- Sim parameters

let aspectRatio =
fromIntegral xsize / fromIntegral ysize

9

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

let dim =
(Z :. xsize :. ysize :: DIM2)

let rRange =
(-aspectRatio/zoom + rmid, aspectRatio/zoom + rmid)

let iRange =
(-1/zoom + imid, 1/zoom + imid)

-- Create an initial grid

let cs = complexPlaneSegment dim rRange iRange

-- Iteratively generate a bunch number sequence arrays

let zss = take iter $ iterate (nextIteration cs) cs

let normss = P.map (force2 ◦ R.map (clamp thresh ◦ norm)) zss

-- Write to file

forM_ [0..length normss-1] $

λi → writeMatrixToGreyscaleBMP

("iteration_" P.++ show i P.++ ".bmp")

(transpose (normss!!i))

With a good choice of parameters this can preduce in a figure like fig. 4.

Figure 4: Result of call “./mandelbrot 1280 960 100 2 -0.5 0 0.66

+RTS -N”. 100th iteration

10

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

3.4 The standard visualization

Often when you see an image of the Mandelbrot Set it tends to not have
any detail inside the set, just on the outside region. Why? Well, while
the interior sequence has plenty of interesting detail one might also wish to
visualize just how quickly the exterior points diverge to infinity. In order
to do this the usual measure is simply how many iterations it takes for
the exterior values to reach our threshold – this is called the escape time
algorithm. How do we implement it in Repa?

It is not sufficient to just look at the norm at iteration i. We can tell if a
sequence has escaped by then but not when. To get the full detail we need
to iterate and accumulate the results from all the arrays we’ve generated.
Fortunately we don’t need to do anything more complicated than zip the
escape time result from the previous iteration and the current zns using a
new update function.

-- The escape time function for a certain threshold and iteration

{-# INLINE escapeTime #-}

escapeTime :: Double → Int → Double → Complex → Double

escapeTime thresh iter i z =
-- If already escaped, change nothing

if i /= -1 then i

-- Else if escaped now, store escape time

else if normSq z > thresh∗thresh then fromIntegral n

-- Else not escaped

else -1

-- Generating a new iteration of escape times from

-- previous iteration and current orbits

nextEscape :: Double → Int →
Array DIM2 Complex →
Array DIM2 Double →
Array DIM2 Double

nextEscape thresh iter z_ns is = deepSeqArray is $

force2 $ R.zipWith (escapeTime thresh iter) z_ns is

So, here we’ve added a scary deepSeqArray function. This is how we
cure lazyness. The function simply forces the first argument to be evaluated
immediately. Here this is of limited use since we tend to keep all iterations in
memory, but in a sensible application this would make a world of difference
in memory use. Much like force, get in the habit of calling deepSeqArray

when you know you need an array to become evaluated to continue.
We also store the iterations as Doubles which may seem silly, but we

need a fractional format to render them anyhow. Also, this will turn out
useful for other things later. Next we need to calculate these in the main
function, which is simply folding over the orbits we’ve already calculated.
This can be done in the main function which now becomes.

11

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

main = do

-- Read arguments from commandline as before

-- Create an initial grid

let cs = complexPlaneSegment dim rRange iRange

-- Create initial iterations of the same size as the grid

let is = force2 $ R.map (λ_ → -1) cs

-- Iteratively generate a bunch number sequence arrays

let zss = take iter $ iterate (nextOrbit cs) cs

let normss = P.map (force2 ◦ R.map (clamp thresh ◦ norm)) zss

-- Generate escape time values from orbits

let iss =
scanl

(λz_ns i → nextEscape thresh i (zss!!i) z_ns)

is

[0..iter-1]

-- Write escape time to file

writeMatrixToGreyscaleBMP

("iteration_" P.++ show iter P.++ "_escape_time.bmp")

(transpose (last iss))

Note that we arbitrarily opted to get rid of the forM batch writing at
this point as file spam was getting a wee bit ridiculous. It’s not just to
confuse you.

The main change is that we use our new function for generating new
escape times and iterate over the list. Generating the 100th iteration now
gives ... an out of memory error.

So, this was touched on earlier – one should not keep several multi-
megabyte arrays in memory, which is exactly what we’re doing right now
with our old orbits. We only need the most recent orbit and escape time
information to make new ones.

We can rewrite our nextIteration function to calculate both the next
escape time result and the next orbit.

nextIteration ::

Double → Int →
Array DIM2 Complex →
Array DIM2 Complex →
Array DIM2 Double →
(Array DIM2 Complex, Array DIM2 Double)

nextIteration thresh iter cs z_ns is =
deepSeqArray is $ deepSeqArray z_ns $ (z_ns’,is’)

where is’ = force2 $ R.zipWith (escapeTime thresh iter) z_ns is

z_ns’ = force2 $ R.zipWith update cs z_ns

12

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

When calling in main we’re still folding, just slightly differently

main = do

-- Same initialization and...

-- Fold to generate arrays.

let (orbits,esctime) = foldl

(λ(zs,is) i → nextIteration thresh i cs zs is)

(cs,is)

[0..iter-1]

-- Normalize orbits

let norms = force2 ◦ R.map (clamp thresh ◦ norm) $ orbits

-- Write escape time to file

writeMatrixToGreyscaleBMP

("iteration_" P.++ show iter P.++ "_escape_time.bmp")

(transpose esctime)

This will correctly generate the escape time image seen in figure 5. In
fact, it’ll cheerfully go up to a few thousand iterations if you’re patient.

Figure 5: Escape time result from “./mandelbrot 1280 960 100 2 -0.5

0 0.66 +RTS -N”. 100th iteration

13

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

3.5 Making everything pretty

There are two issues with the escape time image in figure 5, which may or
may not be visible. First, it’s in greyscale! There is no detail. Second, there
is a banding effect as things either escape on iteration i or they do not,
rather than smooth interpolation. Let’s see what we can do.

First, color. Repa, of course, has a function to write color bitmaps:
writeImageToBMP :: FilePath -> Array DIM3 Word8 -> IO (). Here
the function takes a DIM3 matrix of Word8 values, where the inner dimension
must be 4 and each 8-byte word one of the RGBA components. We would
like some way of generating colors from our Double values. One idea is to
try to map each value to an index in a list [Color] where type Color =

(Word8,Word8,Word8). Non-integer values, if there are any, are then inter-
preted as an interpolation between the adjacent colors. An implementation
of this is

-- A color is an RGB tuple

type Color = (Word8,Word8,Word8)

-- With components thus

red (r,_,_) = r

green (_,g,_) = g

blue (_,_,b) = b

-- Generate a write-ready color array from any coloring function

-- and array of Doubles

colorArray :: (Double → Color) → Array DIM2 Double →
Array DIM3 Word8

colorArray color xs = unsafeTraverse xs resize update

where resize (Z :. x :. y) = (Z :. x :. y :. 4)

update lookup (Z :. x :. y :. c) =
let pos = (Z :. x :. y)

col = color $ lookup pos in

case c of

0 → red col -- R

1 → green col -- G

2 → blue col -- B

3 → 0 -- A

-- The by list coloring function

colorByList :: [Color] → Double → Color

colorByList cs@(c1:c2:_) x

| x > 1 = colorByList (drop i cs) (x - fromIntegral i)

| x < 0 = (0,0,0) -- Negative → black

| otherwise = interpolate x c1 c2

where i = floor x

-- Color interpolation

interpolate :: Double → Color → Color → Color

14

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

interpolate x (r1,g1,b1) (r2,g2,b2) =
(mix r1 r2, mix g1 g2, mix b1 b2)

where mix v1 v2 = round (x ∗fromIntegral v2) +
round ((1-x)∗fromIntegral v1)

New here is the unsafeTraverse function, which is a special, unchecked-
but-fast version of the major Repa combinator traverse. Traversals in Repa
are used to create new arrays from old ones, where the new arrays can have
a different shape. This was not the case with zips and maps, you may recall
– those operations were instead shape preserving.

The type is traverse :: Array sh a -> (sh -> sh’) -> ((sh ->

a) -> sh’ -> b) . This should be read as follows: the first argument is a
source array, here typically our array of escape times. The second argument
is how the new array’s extent is produced from the old one: here we add
an inner dimension of 4 to fit the the RGBA word8:s. The third argument
is a function defining how each element of the new array is produced. It
is passed a lookup function that allows you to look at values in the source
array and a position in the new array to populate. Here this produces one
color component by looking at the corresponding Double in the source array
and the color tuple it maps to.

The main thing that is needed from main is a preferably infinite list of
colors for colorByList, an easy way of producing this is by doing.

main = do

-- Init and generate data as before, then write using

-- rgb color scheme

let rgbcolors = cycle $ [(255,0,0),(0,255,0),(0,0,255)]

-- Map image to color scheme, write RGBA

writeImageToBMP

("iteration_" P.++ show iter P.++ "_norm_iter_color.bmp") $

colorArray (colorByList rgbcolors) (transpose esctime)

Running this results in figure 6.
Here the banding is very clear, but there is fortunately an algorithm that

fixes this. We can replace our escape time measure by a separate function
called Normalized Iteration Count that takes into account by how much an
orbit escapes the threshold. It only works for large thresholds, so we’ll need
to abandon our trusty two. We can also get rid of the noise near the set by
simply applying a logarithm. This results in the final code change

-- Normalized iteration count: escape time with smoothing

{-# INLINE normIterCount #-}

normIterCount :: Double → Int → Complex → Double → Double

normIterCount thresh n z i =
if i /= -1 then i

else if normSq z > thresh∗thresh then ni

15

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

Figure 6: Escape time result from “./mandelbrot 1280 960 100 2 -0.5

0 0.66 +RTS -N”. 100th iteration, colored

else -1

where ni = fromIntegral n -

logBase 2 (log (normSq z) / (2∗log thresh))

-- Generate the next iteration of both escape times and

-- orbits from coordinates and previous iterations of the outputs

nextIteration ::

Double → Int →
Array DIM2 Complex →
Array DIM2 Complex →
Array DIM2 Double →
(Array DIM2 Complex, Array DIM2 Double)

nextIteration thresh iter cs zs is =
deepSeqArray is $ deepSeqArray zs $ (zs’,is’)

where is’ = force2 $ R.zipWith (normIterCount thresh iter) z_ns is

zs’ = force2 $ R.zipWith update cs zs

main :: IO ()

main = do

-- Initialize as before

-- Fold to generate arrays.

16

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

let (orbits,esctime) = foldl

(λ(zs,is) i → nextIteration thresh i cs zs is)

(cs,is)

[0..iter-1]

let norms = force2 ◦ R.map (clamp thresh ◦ norm) $ orbits

let logEsctime = force2 ◦ R.map (logBase 2) $ esctime

-- rgb color scheme

let rgbcolors = cycle $ [(255,0,0),(0,255,0),(0,0,255)]

-- Map image to color scheme, write RGBA

writeImageToBMP

("iteration_" P.++ show iter P.++ "_norm_iter_color.bmp") $

colorArray (colorByList rgbcolors) (transpose logEsctime)

We can produce some pretty neat images of the Mandelbrot Set while
taking the full benefit of multicore processors. Repa is very well suited for
image processing tasks like this, as the rendering is very easy to define as a
parallel task on an array. The final result is smooth, fast fractal rendering
in around 150 lines of code. To conclude the tutorial, a couple of different
images generated by the final version of the program:

Figure 7: “./mandelbrot 1280 960 100 100 -0.5 0 0.66 +RTS -N” Fi-
nal drawing algorithm: Normalized Iteration Count with logarithmic scaling

17

3 REPA AND A SEQUENCE OF COMPLEX NUMBERS

Figure 8: “./mandelbrot 1280 960 1000 100 -0.78 0.2 16 +RTS -N”
A more detailed zoom on coordinates −0.78 + 0.2i

3.6 Possible extensions, optimizations and improvements

If you followed along so far, you should have a pretty good grasp of what
Repa can do. If you’re not yet bored you may be wondering: what more
can you do with this? Adding things like a GUI and generally making
the renderer usable by humans springs to mind, however such things are
generally quite boring. There are more interesting ideas around, and a non-
exhaustive list is:

• Optimizations! The escape time algorithm especially is quite slow,
simply because a lot of orbits are being calculated that do not need
to be. First, the central black cardioid and the perfectly circular first
order bulb can both be excluded by checking their bounds. Second
and most importantly, once an element has been determined to have
escaped one does not need to iterate further on it. A lot of wasted
time is currently spent there. Extensive computation is only required
in a band near the boundary of the set, especially for renders that
cover the entire thing. These optimizations can be achieved by using
the Slice functionality in Repa, which has not been covered in this
tutorial.

18

A CODE

• Other algorithms! There are fractals that are related to the Mandel-
brot but use slightly different update functions. There exists a Julia
Set for each point in the complex plane, for instance. One can also
vary the basic sequence generating function for the Mandelbrot Set by
changing to different polynomial, which will result in different fractals.
There are also more computationally intense related fractals like the
Buddhabrot which could be rendered using Repa.

• Other coloring schemes! We have colored using escape time and orbit
norm, but one might also color the orbits using the real and imaginary
components, or use completely different color schemes like coloring
an each exterior point by the distance to the closest point on the
Mandelbrot Set itself.

• Beating Nyquist! A common problem in our renderings is that details
near the boundary looks extremely messy, since the iteration count
changes much more rapidly than once/pixel. The logarithmic scale was
a rather hackish way of dealing with this while preserving information.
A better solution is to take several samples per pixel and average them
to produce a more accurate escape time value for the entire pixel.

• Make a raytracer! A Mandelbrot renderer is really a special case of ray
tracing – our rays are orbits in the complex plane and they collide with
a great big threshold cylinder and return its color. The exact same
techniques used here to trace those orbits can be used to trace any
rays, for instance those of photons, and collide them with anything,
such as geometrical objects. Repa is very well suited for implementing
a general purpose offline 3D renderer, if this strikes your fancy.

A Code

The full program we’ve written is reproduced below

{------------------------

-- Mandelbrot Renderer --

-- using Repa --

-- --

-- Marcus Lonnberg --

-- marlon@student --

-- --

-- Karl Schmidt --

-- karsch@student --

------------------------}

module Main where

19

A CODE

import Prelude as P

import Data.Array.Repa as R

import Data.Array.Repa.IO.BMP as R

import Control.Monad

import System.Environment

import Data.Word

-- Complex Arithmetic --

--Cannot use Data.Complex in Repa, so encode as tuple (Real, Imag)

type Complex = (Double,Double)

-- Multiplication

{-# INLINE mul #-}

mul :: Complex -> Complex -> Complex

mul (r1,i1) (r2,i2) = (real, imag)

where real = r1*r2 - i1*i2

imag = i1*r2 + i2*r1

-- Addition

{-# INLINE add #-}

add :: Complex -> Complex -> Complex

add (r1,i1) (r2,i2) = (r1+r2, i1+i2)

-- Square

{-# INLINE sq #-}

sq :: Complex -> Complex

sq (r,i) = (r*r - i*i, 2*r*i)

-- Square of the 2-norm

{-# INLINE normSq #-}

normSq :: Complex -> Double

normSq (r,i) = (r*r + i*i)

-- 2-norm

{-# INLINE norm #-}

norm :: Complex -> Double

norm = sqrt . normSq

20

A CODE

-- Repa Helpers --

-- Generate a region of the complex plane as a Repa array.

-- Takes array dimension and bounding values for the region.

complexPlaneSegment :: DIM2 -> (Double,Double) -> (Double,Double) ->

Array DIM2 Complex

complexPlaneSegment (Z :. x :. y) (rmin,rmax) (imin,imax) =

fromList (Z :. x :. y) ris

where rstep = (rmax-rmin) / (fromIntegral x - 1)

istep = (imax-imin) / (fromIntegral y - 1)

reals = take x $ iterate (+rstep) rmin

imags = take y $ iterate (+istep) imin

ris = [(r,i) | r <- reals, i <- imags]

-- Update functions when iterating --

-- Clamp a value to an upper bound

{-# INLINE clamp #-}

clamp :: Double -> Double -> Double

clamp thresh x = if abs x < thresh then x else thresh

-- The update rule for our Complex sequence

-- Again, we want this to be used in parallel so force inlining!

{-# INLINE update #-}

update :: Complex -> Complex -> Complex

update c z_n = sq z_n ‘add‘ c

-- Escape time: just check when we escape

{-# INLINE escapeTime #-}

escapeTime :: Double -> Int -> Complex -> Double -> Double

escapeTime thresh n z i =

if i /= -1 then i

else if normSq z > thresh*thresh then fromIntegral n

else -1

-- Normalized iteration count: escape time with smoothing

{-# INLINE normIterCount #-}

normIterCount :: Double -> Int -> Complex -> Double -> Double

21

A CODE

normIterCount thresh n z i =

if i /= -1 then i

else if normSq z > thresh*thresh then ni

else -1

where ni = (fromIntegral n) - logBase 2 (log (normSq z) / (2*log thresh))

-- Generating a new orbit

nextOrbit :: Array DIM2 Complex ->

Array DIM2 Complex ->

Array DIM2 Complex

nextOrbit cs z_ns = deepSeqArray z_ns $

force2 $ R.zipWith update cs z_ns

-- Generating a new iteration of escape times from

-- previous iteration and current orbits

nextEscape :: Double -> Int ->

Array DIM2 Complex ->

Array DIM2 Double ->

Array DIM2 Double

nextEscape thresh iter z_ns is = deepSeqArray is $

force2 $ R.zipWith (normIterCount thresh iter) z_ns is

-- Generate the next iteration of both escape times and orbits from a

-- previous iteration

nextIteration ::

Double -> Int ->

Array DIM2 Complex ->

Array DIM2 Complex ->

Array DIM2 Double ->

(Array DIM2 Complex, Array DIM2 Double)

nextIteration thresh iter cs z_ns is =

deepSeqArray is $ deepSeqArray z_ns $ (z_ns’,is’)

where is’ = force2 $ R.zipWith (normIterCount thresh iter) z_ns is

z_ns’ = force2 $ R.zipWith update cs z_ns

-- Colors are just RGB tuples

type Color = (Word8,Word8,Word8)

-- With components thus

red (r,_,_) = r

green (_,g,_) = g

blue (_,_,b) = b

-- Generate a coloring of an array from a coloring function

22

A CODE

colorArray :: (Double -> Color) -> Array DIM2 Double ->

Array DIM3 Word8

colorArray color xs = unsafeTraverse xs resize update

where resize (Z :. x :. y) = (Z :. x :. y :. 4)

update lookup (Z :. x :. y :. c) =

let pos = (Z :. x :. y)

col = color $ lookup pos in

case c of

0 -> red col -- R

1 -> green col -- G

2 -> blue col -- B

3 -> 0 -- A

-- Generate a coloring function from a list, where the 2nd argument is

-- treated as an "index" with interpolation

colorByList :: [Color] -> Double -> Color

colorByList cs@(c1:c2:_) x

| x > 1 = colorByList (drop i cs) (x - fromIntegral i)

| x < 0 = (0,0,0) -- Negative -> black

| otherwise = interpolate x c1 c2

where i = floor x

-- Interpolate between two color values. First argument assumed in [0,1]

interpolate :: Double -> Color -> Color -> Color

interpolate x (r1,g1,b1) (r2,g2,b2) = (mix r1 r2, mix g1 g2, mix b1 b2)

where mix v1 v2 = round (x*fromIntegral v2) + round ((1-x)*fromIntegral v1)

-- Main function. Get arguments, run simulation, write pictures.

main :: IO ()

main = do

-- get command line argument list

args <- getArgs

-- pic size, iters

let [xsize, ysize, iter] = P.map read $ take 3 args

-- threshold, rendering area and zoom factor

let [thresh, rmid, imid, zoom] = P.map read $ drop 3 args

-- Sim parameters

let aspectRatio = fromIntegral xsize / fromIntegral ysize

let dim = (Z :. xsize :. ysize :: DIM2)

23

A CODE

let rRange = (-aspectRatio/zoom + rmid, aspectRatio/zoom + rmid)

let iRange = (-1/zoom + imid, 1/zoom + imid)

-- Create an initial grid

let cs = complexPlaneSegment dim rRange iRange

-- Create initial escape iterations

let is = force2 $ R.map (_ -> -1) cs

-- Fold to generate arrays.

let (orbits,esctime) = foldl (\(zs,is) i -> nextIteration thresh i cs zs is) (cs,is) [0..iter-1]

let norms = force2 . R.map (clamp thresh . norm) $ orbits

let logEsctime = force2 . R.map (logBase 2) $ esctime

-- rgb color scheme

let rgbcolors = cycle $ [(255,0,0),(0,255,0),(0,0,255)]

-- Map image to color scheme, write RGBA

writeImageToBMP

("iteration_" P.++ show iter P.++ "_norm_iter_color.bmp") $

colorArray (colorByList rgbcolors) (transpose logEsctime)

24

	Repa and an introduction
	Repa and arrays, shapes & indexes
	Repa and a sequence of complex numbers
	Some preliminaries
	Generating and displaying data
	Generating and visualizing the sequence
	The standard visualization
	Making everything pretty
	Possible extensions, optimizations and improvements

	Code

