Lecture 6
Ana Bove

April 20th 2015

Overview of today’s lecture:

o More on NFA;
o NFA with e-Transitions;
o Equivalence between DFA and e-NFA;

o Defined by a 5-tuple (Q, X, 0, qo, F);

o Why “non-deterministic” ?;
00:QxX—Pow(Q);

o Easier to define for some problems;

o Accept set of words x such that &(qo, x) N F # 0;
)

Given a NFA N we can apply the subset construction and get a DFA
D ..

o ... such that £L(N) = L(D);

o Hence, also accept the so called regular language.
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A Bad Case for the Subset Construction

Proposition: Any DFA recognising the same language as the NFA below
has at least 2" states:

0,1
Q 1 . 0,1 . 0,1 0,1‘. 071‘0

This NFA recognises strings over {0, 1} such that the nth symbol from the
end is a 1.

Proof: Let £, = {xlu | x € X*,uc X"V and D =(Q,%,0,q0,F) a
DFA.

We want to show that if |Q| < 2" then L(D) # L.
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A Bad Case for the Subset Construction (Cont.)

Lemma: If X = {0,1} and |Q| < 2" then there exists x,y € ¥* and
u,v € "1 such that 0(qo, x0u) = 0(qo, y1v).

Proof: Let us define a function h: ¥" — Q such that h(z) = d(qo, z).
h cannot be injective because |Q| < 2" = |¥L"|.
Hence, we have a;...a, # by ... b, such that
h(ai...an) =0(qo,a1-..an) =0(qo, by ...by) = h(by...by)
Let us assume that a; = 0 and b; = 1.
let x=a1...aj—1, Yy =b1...bi_1, u=aj11...a,0" %, v=bii1... b0 1.

Hence (recall that for a DFA, S(q,zw) = 8(3(%2), w)):
S(qQ,XOU) — S(q07 ai ... anoi_l) = 3(3((707 a... an), Oi_l) =

NN

5(5((70, b1 oo bn), Oi_l) == S(qo, b1 oo bnOi_l) — S(qo,ylv)
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A Bad Case for the Subset Construction (Cont.)

Lemma: If|Q| < 2" then L(D) # L,.

Proof: Assume L(D) = L,.

Let x,y € ¥* and u,v € X"~ ! as in previous lemma.
Then, ylv € £L(D) but x0u ¢ L(D),

That is, (qo, y1lv) € F but §(qo, x0u) ¢ F.

However, this contradicts the previous lemma that says that
0(qo, x0u) = d(qo, y1v).
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Product Construction for NFA

Definition: Given 2 NFA Ny = (Ql, 2,51, aqi, Fl) and
Ny = (@2, X, 62, g2, F2) over the same alphabet ¥, we define the product
Ny x Np = (Q, X, 9, qo, F) as follows:

0 Q= Q1 x Q@
o 6((p1, p2),a) = 61(p1,a) x d2(p2, a);
° qo = (g1, Q)
o F=F x Fs.

Lemma: (tl, t2) € 3((p1,p2),x) iff t1 € Sl(pl,X) and t, € 82(p2,X).

Proof: By induction on x.

Proposition: £(N; x Np) = L(N1) N L(No).
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Complement for NFA

OBS: Given NFA N = (Q,%,6,q9,F) and N = (Q,X,d,9,Q — F) we do
not have in general that L(N') = £* — L(N).

Example: Let ¥ = {a} and N and N’ as follows:

@ @

L(N) = {a}

A_QL‘ L(N') = {e} #%* — {a}
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NFA with e-Transitions

Another useful extension of automata that does not add more power is the

possibility to allow e-transitions, that is, transitions from one state to
another without reading any input symbol.

Example: The following e-NFA searches for the keyword web and ebay:

@@

@@ @
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Example: Let ¥ = {1}.
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Definition: A NFA with e-transitions (e-NFA) is a 5-tuple (Q, X, d, go, F)
consisting of:

Q A finite set Q of states:

Q A finite set L of symbols (alphabet);

Q A “partial” transition function 6 : @ x (X U {€}) — Pow(Q);
Q A start state qp € Q;

Q Aset F C Q of final or accepting states.
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e-NFA Accepting Decimal Numbers

Exercise: Define a NFA accepting number with an optional 4 /- symbol
and an optional decimal part.

S : 0,1,....,9 €

—qo || {q1} | @ 0 {a1}
q1 0 ] {q2} 0

@ 0 |{a}| {aw} | {q}
g3 0 0 {qa} 0
*d4 0 0 {q4} 0

The uses of e-transitions represent the optional symbol + /- and the
optional decimal part.
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e-Closures

Informally, the e-closure of a state q is the set of states we can reach by
doing nothing or by only following paths labelled with e.

Example: For the automaton

k. 6;
b
@

the e-closure of qo is {qo, 91, 92, g3, G4 }-
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e-Closures

Definition: Formally, we define the e-closure of a set of states as follows:

o If g € S then g € ECLOSE(S);
o If g € ECLOSE(S) and p € 6(q,€) then p € ECLOSE(S).

Note: Alternative formulation

ge s qg € ECLOSE(S) p € d(q,e€)
g € ECLOSE(S) p € ECLOSE(S)

Definition: We say that S is e-closed iff S = ECLOSE(S).
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Remarks: e-Closures

o Intuitively, p € ECLOSE(S) iff there exists g € S and a sequence of
e-transitions such that

®© @ - @ e

@ The e-closure of a single state g can be computed as ECLOSE({q});

o ECLOSE(0) = 0;
o Sis e-closed iff g € S and p € 6(q, €) implies p € S;

o We can prove that ECLOSE(S) is the smallest subset of @ containing
S which is e-closed.

Exercise: Implement the e-closure!
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Extending the Transition Function to Strings

Definition: Given an e-NFA E = (Q, %, d, qo, F) we define

0: QxI* = Pow(Q)
0(q,€) = ECLOSE({q})

S(q, ax) = UpeA(ECLOSE({q}),a) S(Pa x)
where A(S, a) = Upesd(p, a)

Remark: By definition, §(g,a) = ECLOSE(A(ECLOSE({q}), a)).

Remark: We can prove by induction on x that all sets §(qg, x) are
e-closed.

This result uses that the union of e-closed sets is also a e-closed set.
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Language Accepted by a e-NFA

Definition: The /anguage accepted by the e-NFA (Q, X, 0, qo, F) is the
set L={x € X*]|0(qo,x)NF #0}.

Example: Let ¥ = {b}.

The automaton accepts the language {b, bb, bbb}.

Note: Yet again, we could write a program that simulates a e-NFA and
let the program tell us whether a certain string is accepted or not.

Exercise: Do it!
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Eliminating e-Transitions

Definition: Given an e-NFA E = (Qg, X, 0k, e, FE) we define a DFA
D = (Qp,X,dp,qp, Fp) as follows:

o Qp = {ECLOSE(S) | S € Pow(QE)};

o 6p(S,a) = ECLOSE(A(S, a)) with A(S, a) = Upesd(p, a);
o gp = ECLOSE({qe});

o Fp={SeQp|SnFe+#0.

Note: This construction is similar to the subset construction but now we
need to e-close after each step.

Exercise: Implement this construction!
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Eliminating e-Transitions

Let E be an e-NFA and D the corresponding DFA after eliminating
e-transitions.

Lemma: Vx € ¥*. d£(qe, x) = dp(qp, x).

Proof: By induction on x.

Proposition: L(E) = L(D).

Proof: x € L(E) iff 6g(qe, x) N Fe # 0 iff dg(qe, x) € Fp iff (by previous
lemma) dp(gp, x) € Fp iff x € L(D).

April 20th 2015, Lecture 6 TMV027/DIT321 17/20



Let us eliminate the e-transitions in e-NFA that recognises numbers in
slide 10.

We obtain the following DFA:
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We have shown that DFA, NFA and e-NFA are equivalent in the sense that
we can transform one to the other.

Hence, a language is regular iff there exists a finite automaton (DFA, NFA
or e-NFA) that accepts the language.

April 20th 2015, Lecture 6 TMV027/DIT321 19/20



Sections 3.1, 3.4, 3.2.2:

o Regular expresssions.
o Algebraic laws for regular expressions;
o Equivalence between FA and RE: from FA to RE.




