Finite Automata Theory and Formal Languages

TMV026/TMV027/DIT321 – Responsible: Ana Bove

Wednesday 21 of August 2013 Total: 60 points

TMV027/DIT321 registration VT13	TMV026/DIT321 registration before VT13
Exam valid 6hp	Exam valid 7.5 hp
CTH: ≥ 27 : 3, ≥ 40 : 4, ≥ 50 : 5	CTH: ≥ 33 : 3, ≥ 43 : 4, ≥ 53 : 5
GU: ≥ 27 : G, ≥ 45 : VG	GU: ≥ 33 : G, ≥ 50 : VG

No help material but dictionaries to/from English or Swedish.

Write in English or Swedish, and as readable as possible (think that what we cannot read we cannot correct).

OBS: All answers should be well motivated. Points will be deduced when you give an unnecessarily complicated solution or when you do not properly justify your answer.

Good luck!

- 1. (5pts) Prove by using induction that $\sum_{i\geq 0}^{n} i(i+1) = n(n+1)(n+2)/3$. Do not forget to clearly state which kind of induction you are using, the property you will prove, the base case(s) and the inductive hypothesis(es)!
- 2. Consider the language $\{a^n b \mid n \neq 4m, m \ge 0\}$.
 - (a) (3pts) Construct a DFA that accepts this language.
 - (b) (3pts) Use your intuition and give a (simple) regular expression that generates this language.
- 3. Consider the following NFA

	0	1
$\rightarrow q_0$	$\{q_1, q_2\}$	$\{q_4\}$
q_1	Ø	$\{q_0\}$
q_2	Ø	$\{q_3\}$
q_3	$\{q_0\}$	Ø
$^{*}q_{4}$	Ø	Ø

- (a) (2pts) User your intuition and give a (simple) regular expression that generates the language accepted by this NFA.
- (b) (4pts) Convert this NFA to an equivalent DFA.
- 4. (4.5pts) Minimise the following automaton. Show the intermediate table and justify the construction of the new automaton.

	0	1
$\rightarrow q_0$	q_1	q_2
q_1	q_2	q_3
q_2	q_2	q_4
$^{*}q_{3}$	q_3	q_4
$^{*}q_{4}$	q_3	q_4
$^{*}q_{5}$	q_5	q_4

5. (4pts) Compute, using any of the methods given in class, a regular expression generating the language accepted by the DFA below. Show enough intermediate steps to follow what you are doing!

	0	1
$\rightarrow q_0$	q_1	q_2
q_1	q_1	q_3
$^{*}q_{2}$	q_1	q_2
q_3	q_2	q_3

- 6. (a) (2pts) Under which operations are regular languages closed? Name all those you can remember.
 - (b) (2ts) Show that if \mathcal{L}_1 and \mathcal{L}_2 are regular, then $\{w \mid w \notin \mathcal{L}_1 \text{ and } w \notin \mathcal{L}_2\}$ is also regular.
 - (c) (3pts) Is it true that if \mathcal{L}_1 is regular, \mathcal{L}_2 is not regular and $\mathcal{L}_1 \cap \mathcal{L}_2$ is regular, then $\mathcal{L}_1 \cup \mathcal{L}_2$ is not regular? Justify your answer as formal as you can.
- 7. (a) (2pts) What is the definition of a context-free grammar?
 - (b) (2pts) What are the steps one needs to perform, and in which order, if one wants to simplify a grammar?
- 8. (a) (5pts) Give a context free grammar that generates the language $\{a^n b^m c^k \mid k = |n-m|\}$. Explain your grammar!
 - (b) (1.5pts) Is your grammar ambiguous? Justify.
 - (c) (2.5pts) Give the leftmost derivation and the parse tree of the word *aabbbc*.
- 9. (a) (2pts) Formulate the Pumping lemma for context-free languages.
 - (b) (4.5pts) Use this lemma to show that $\{a^i b^j a^i b^j \mid i, j \ge 0\}$ is not context-free.
- 10. (4pts) Consider the following grammar with start symbol S:

 $S \to AB$ $A \to BB \mid a$ $B \to AB \mid b$

Apply the CYK algorithm to determine if the string *aabab* is generated by this grammar. Show the resulting table and justify your answer.

11. (4pts) Assume your input tape has at most one word written in it. Define a Turing machine (or give its high-level description) over the alphabet $\{a, b\}$ which does nothing if the input tape has less than three non-empty symbols, and otherwise writes the 3rd symbol from the left at the end of the input. For example, if the input is *aabaabaa* the output becomes *aabaabab*. Explain your machine.