
Hotel-project

Week 5-8: Implementation

Assignment

For the final part of the project you shall...

1. ...implement your hotel component(s) in Java

2. ...implement one or more test suites for your system and place these
in components

Your system shall at least be able to handle the processes for: booking,
checking in, and checking out, in a proper way. By proper is understood
that your solution makes use of the designs you have done thus far in the
course, and that you apply a good object-oriented approach. Your system
is required to follow the models you have created in the last four weeks.
As a part of this, you shall generate the structural code for your system
component(s) from your class diagram. If you run into problems and have
to make changes in your design, update your models as well!

Testing shall be separated from, rather than hard-coded into, the system.
Provide one or more components that simulate the users of the system, and
contain the tests. Remember to include tests for erroneous or undesired
behaviour, in order to show that your system is robust! Additionally, try
considering more advanced test cases, such as multiple actors trying to book
rooms at the same time.

We advise you to use an iterative process during implementation. Time
is short and you want to avoid spending the last week debugging. Our
recommendation is to start with a small part of the system. Test and debug
it before proceeding with the implementation of new features. You need test
cases for the covered use cases when you demonstrate the system; defining
them now is time well spent.

Do’s and Don’ts

In the following, we have listed some things that you can do and some things
to explicitly NOT do!

1



You may:

• ...ignore the persistence and the presentation layer.
That means that your system does not need to have any form of graph-
ical user interface, nor does its need persistent data.

• ...place initialisation code in your system component, in case you don’t
cover use cases for creating rooms and similar things that you need
to demonstrate the three required use cases. However, for a higher
grade than 3/G, your system shall be able to provide these functions
through a component interface.

Do NOT use:

• ...one central object representing the system.

• ...huge interfaces with 10+ methods.

• ...classes, in your system component(s), not generated from your class
diagram.

• ...any kind of access to the inside of a component from outside not
going through a component interface.

• ...any kind of test cases inside your system component(s). An excep-
tion is initialisation code (see the list of allowed things above).

Checklist

• A Java implementation covering at least

– the booking use case

– the check in use case

– the check out use case

• Test cases that show how the use cases are realised. For each use
case, there should be at least one test case that violates the intended
behavior.

Final Hand-in

The deadline for handing in the source code of the running system is 7th
January 2016 09.00. If necessary, a delta of report updates may also be
handed in at this time. Please consult the course homepage for further
details.

2



Technical Guidelines

Programming Language

You shall implement your system in Java. Exceptions are only possible if
you implement the code generation from your class diagram yourself. If you
are really interested in doing this, contact your supervisor (and Grischa for
technical information).

IDE

You may use the IDE of your choice for developing your system and test com-
ponent(s). However, we only provide help for the Eclipse IDE (www.eclipse.org).
Additionally, the code generation uses the Eclipse Modeling Framework.
Therefore, the use of Eclipse is highly recommended.

Code Generation

As a starting point for your implementation, you are required to generate
Java code from your class diagram. This is done using the Eclipse Modeling
Framework (EMF). A brief introduction to code generation from Papyrus
models using EMF is given at http://youtu.be/nw182D69k0M.

Some hints and recommendations:

EMF generates Interfaces for every class in your class diagram. Additionally,
it creates classes implementing each of these interfaces (*.impl packages).
Only make changes to the classes in the *.impl packages! Additionally, if you
make changes, remember to change the ’@generated’ tag to ’@generated
NOT’. Every time you re-generate code from your models, take great care that
you do not override any changes that are not backed up, or – preferably –
under revision control (see next section). There are also two links on the
course homepage (under Project) which explain in detail how the generated
code looks like and should be handled.

Revision Control

We highly recommend the use of revision control systems, such as SVN or
GIT, for improved collaboration and in order to avoid data loss. We will only
provide minimal support for revision control, though. There is plenty of good
information and tutorials on the internet for SVN and GIT. Free version
control repositories are available, for example through www.github.com or
www.bitbucket.org.

3

http://youtu.be/nw182D69k0M
www.github.com
www.bitbucket.org


Components in Java

There are many ways to implement components in Java; going into details
would probably require a course in itself. A rather rudimentary approach is
to place each component in a different package, and in different Java projects
in Eclipse.

In each of these components you will have your component interfaces and
classes implementing these interfaces (so that they can be instantiated). The
classes implementing the component interfaces can, for example, be imple-
mented following the Singleton pattern. On the side of the component that
is using (requiring) another component’s interface, you can also have a corre-
sponding class that handles calls to the other component interface. In other
words, a ”requires” interface conforming to the ”provides” interface. This
ensures that the only communication with another component’s interface is
going through a single, designated, class.

Within your component, all methods, apart from the ones in your com-
ponent interfaces, should have package visibility or less. This ensures that
no method can be directly accessed from outside the component. Your at-
tributes should of course follow data encapsulation and should not even be
directly accessible from other classes within the same package (component).

The aim is for you to be able to treat your system component(s) as a
black box! This means that you can later package them as .jar files and
simply import them in your testing components.

4


