
Testing, debugging,
(specification) and

verification

Team
Teacher: Atze van der Ploeg (atze)

Course assistants:
● Mauricio Chimento (chimento)
● Simon Robillard (simrob)
● Bart van Delft (vandeba)

... @chalmers.se

Problems? Talk to us!!

Student representatives

....

Who gets the store credit?!!

Student representatives
Name email

Tobias Edvardsson tobedv

Jesper Kjellqvist jeskje

Oscar Muhr oscarmu

Henrik Olsson henolss

Robin Punell punell

...@student.chalmers.se

What’s all this then?
This course is about:

What’s a bug?
A software bug is an error, flaw, failure, or fault in a computer program or
system that causes it to produce an incorrect or unexpected result, or to
behave in unintended ways. -- Wikipedia

https://en.wikipedia.org/wiki/Failure
https://en.wikipedia.org/wiki/Fault_(technology)
https://en.wikipedia.org/wiki/Software_system
https://en.wikipedia.org/wiki/Software_system

Bug etymology
● “bug” used to describe

defects in guns, pinball
machines, cars, since at
least 1878

● popularized for computers
by moth in relay tube of
harvard mark II in 1946

Terminology
● Testing - Check for bugs
● Debugging - Remove bugs
● Specification - Describe expected

behavior (what is a bug?)
● (Formal) Verification - Prove that

program conforms to specification
(prove that there are no bugs)

This course

Introduction to techniques to get (some)
certainty that your program does what it’s
supposed to.

Organizational stuff
www.cse.chalmers.se/edu/course/TDA567
Passing criteria:
● Written exam
● 3 lab hand-ins
● Can be passed separately

Labs: Work in pairs, submission via Fire (see website)
 Submit by deadline!
Course literature: All available as e-book, see website

http://www.cse.chalmers.se/edu/course/TDA567
http://www.cse.chalmers.se/edu/course/TDA567

Course Evaluation

5 Student representatives
● feedback meetings with teachers
● First meeting: Next week 13:00

Everyone: web questionnaire after course

Some really bad bugs
Ariane 5 rocket
● Exploded right after launch
● Conversion of 64-bit float to 16-bit integer caused

overflow in guidance system made it crash

Another really bad space bug
Mars Climate Orbiter (1998)
● Came to close to planet
● Disintegrated in Mars atmosphere
● Pounds/second ≠ Newton/second

Scary bug

Therac-25 Radiotherapy Machine (1985-87)
● Patients overdosed
● 3 dead, 2 severly injured
● Cause: race condition

Costly Bug

Pentium Floating-point bug
● Incorrect result through floating

point division
● Rarely encountered in practice
● Public outcry, bad handling,

image dent

Software bugs abound

● Global cost of bugs $ 312 billion (estimate)
● Estimated 50% of programmers time spend

on fixing bugs
● The earlier bug found (or prevented) the

better

Brainstorm

How can you get some assurance that a
program does what you want it to do?

Techniques for assurance

● Code review, Pair programming
● KISS
● Testing
● Types
● Formal proof of correctness (verification)
● “Proven technology”
Usually: more assurance = more effort
Lots of research focusses on more assurance for less effort

Level of certainty (*)
Field Testing used? Verification Used?

Web programming Yes, typically manual No

Game programming Yes No

OS Yes In research, Partial

Hardware Probably Yes

Aviation, Cars Yes, extensive Sometimes

Medical Yes, extensive Sometimes

(*) This is just an indication, I have no figures to back this up

What is a bug?

❖ Non termination
❖ Crash

➢ type error
➢ index-out-of-bounds
➢ stackoverflow
➢ segfault
➢

But that are not all bugs...

Specification

An unambiguous description of what a function
should do.

Bug = failure to meet specification

Each (non-crashing) program is correct with
respect to SOME specification

Precise
Economist: All cows in Scotland
are brown!

Logician: There is at least one
brown cow in Scotland

Computer scientist: There is at
least one brown cow in Scotland,
at least one side of which is
brown.

Let’s try
public static int[] sort(int[] a)

Requires: ...
Ensures : ...

Let’s try
public static int[] sort(int[] a)

Requires: Input is an array of integers
Ensures : Output is a sorted array of integers

Let’s try
public static int[] sort(int[] a)

Requires: Input is an array of integers
Ensures : Output is a sorted array of integers

Tests:

sort({3,2,5}) == {2,3,5}
sort({}) == {}
sort({17}) = {17}

Let’s try
public static int[] sort(int[] a)

Requires: Input is an array of integers
Ensures : Output is a sorted array of integers

Tests:

sort({3,2,5}) == {2,3,5}
sort({}) == {}
sort({17}) = {17}

Let’s try
public static int[] sort(int[] a)

Requires: Input is an array of integers
Ensures : Output is a sorted array of integers

sort({}) == {1,2,3}

Let’s try
public static int[] sort(int[] a)

Requires: Input is an array of integers
Ensures : Output is a sorted array of integers
containing only elements from a

sort({}) == {1,2,3}

Let’s try
public static int[] sort(int[] a)

Requires: Input is an array of integers
Ensures : Output is a sorted array of integers
containing only elements from a

sort({1,2}) == {1,1,1,1,1,2,2,2,2}

Let’s try
public static int[] sort(int[] a)

Requires: Input is an array of integers
Ensures : Output is a sorted array of integers
containing only elements from a

sort({1,2}) == {1,1,1,1,1,2,2,2,2}

Let’s try
public static int[] sort(int[] a)

Requires: Input is an array of integers
Ensures : Output is a sorted array of integers
containing a permutation of the elements in a

sort({1,2}) == {1,1,1,1,1,2,2,2,2}

Let’s try
public static int[] sort(int[] a)

Requires: Input is an array of integers
Ensures : Output is a sorted array of integers
containing a permutation of the elements in a

sort({1,2}) == {1,1,1,1,1,2,2,2,2}

Let’s try
public static int[] sort(int[] a)

Requires: Input is an array of integers
Ensures : Output is a sorted array of integers
containing a permutation of the elements in a

sort(null) throws nullpointer exception

Let’s try
public static int[] sort(int[] a)

Requires: Input is an array of integers
Ensures : Output is a sorted array of integers
containing a permutation of the elements in a

sort(null) throws nullpointer exception

Let’s try
public static int[] sort(int[] a)

Requires: Input is a non-null array of integers
Ensures : Output is a sorted array of integers
containing a permutation of the elements in a

sort(null) throws nullpointer exception

Let’s try
public static int[] sort(int[] a)

Requires: Input is a non-null array of integers
Ensures : Output is a sorted array of integers
containing a permutation of the elements in a

int[] a = new int[] { 3,2,1};
int[] b = sort (a);
a[0] == ???

Let’s try
public static int[] sort(int[] a)

Requires: Input is a non-null array of integers
Ensures : No changes are made to the input
array and the output is a new sorted array of
integers containing a permutation of the
elements in a

int[] a = new int[] { 3,2,1};
int[] b = sort (a);
a[0] == 3

Contract metaphor

Supplier: (callee)
 Implementer of method
Client: (caller) Implementer of
 calling method or user
Contract:
Requires: What the client must ensure
Ensures: What the supplier must ensure

Use fancy words!
Requires = Precondition
Ensures = Postcondition

If a caller of C.m() fullfills the required Precondition
then the callee, C.m(), ensures that the
Postcondition holds after C.m() finishes.

More terminology
Failure: Method C.m() fails if

precondition held before C.m(),

but postcondition does not hold after C.m()

(or if C.m() does not finish)

Correct: Method C.m() cannot fail.

In other words, whenever

C.m() is called and the precondition holds, then C.m()
finishes and the postcondition holds.

Testing

Test: try out inputs, see if outputs are correct

This course: Unit testing, property based testing

Debugging

Understand why a program does not do what it’
s supposed to, usually via tool support such as
the Eclipse debugger

Verification

Verification: Mathematically prove method
correct

This course: First order logic and Dafny

Course contents
Testing: black vs white box, unit test, coverage, property
based testing (stateless and stateful)
Debugging: execution control, inspection, localisation
Formal specification: contracts, assertions, invariants,
Dafny, first-order-logic
Formal verification: Weakest precondition calculus, formal
proofs, loop invariants

