
Debugging
Testing, debugging & verification

Atze van der Ploeg

“Most people, if you describe a train of events
to them, will tell you what the result would
be. They can put those events together in

their minds, and argue from them that
something will come to pass. There are few
people, however, who, if you told them a

result, would be able to evolve from their own
inner consciousness what the steps were

which led up to that result. This power is what
I mean when I talk of reasoning backwards,

or analytically.”

Sherlock Holmes in A Study in Scarlet
 by A. C. Doyle

Today

● Debugging steps and example
● Automatic problem minimization (shrinking)
● Backwards dependencies

A bug has been found, whodunnit?

1. Verify the Bug and Determine Correct Behavior
2. Isolate and Minimize (shrink)
3. Eyeball the code, where could it be?
4. Devise and run an experiment to test your hypothesis
5. Repeat 3,4 until you understand what’s wrong
6. Fix the Bug and Verify the Fix
7. Create a Regression Test Demo!

Test your hypothesis - observe outcome!

● Simple logging : print statements
● Advanced logging: configureable what is printed based on

level (OFF < FINE . . . < INFO < WARNING < SEVERE)
● Debugging tools such as the eclipse debugger

“Debugging is twice as hard as writing the code in the

first place. Therefore, if you write the code as cleverly as

possible, you are, by definition, not smart enough to

debug it.”

- Brian Kernighan

Automatic problem minimization (shrinking)

...
<td align=left valign=top>
<SELECT NAME="op sys" MULTIPLE SIZE=7>
<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION VALUE="Windows 95">Windows 95<OPTION VALUE="Windows
98">Windows 98<OPTION VALUE="Windows ME">Windows ME<OPTION VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows
NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac System 7.5">Mac System 7.5<OPTION VALUE="Mac
System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System 8.0<OPTION VALUE="Mac System 8.5">Mac System
8.5<OPTION VALUE="Mac System 8.6">Mac System 8.6<OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS
X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX<OPTION VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION VALUE="OpenVMS">OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION
VALUE="OSF/1">OSF/1<OPTION VALUE="Solaris">Solaris<OPTION VALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT>
</td>
<td align=left valign=top>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION
VALUE="P5">P5</SELECT>
</td>
<td align=left valign=top>
<SELECT NAME="bug severity" MULTIPLE SIZE=7>
<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION VALUE="major">major<OPTION
VALUE="normal">normal<OPTION VALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT>
</tr>
</table>
...

<SELECT>

paper

This input made mozilla crash in 2002, what was the problem?

https://www.st.cs.uni-saarland.de/papers/tse2002/tse2002.pdf
https://www.st.cs.uni-saarland.de/papers/tse2002/tse2002.pdf

Shrinking revisited

● Shrink the failing input somehow
● See if the test still fails
● If so shrink more, otherwise backtrack
Many possible ways of shrinking!
For example: try all sub-lists

Last week: greedy binary search. Results often good, but not garanteed to be
minimal

Automatically go from failing test to minimal
failing test

What is minimal?
Global minimum: Smallest subsequence of input such that the test still fails

1-minimal: Removing any single character from the input makes the test succeed
 (every character matters)

 Subsequence of a string: a string that can be obtained by deleting elements of

the input string

Example: “abd” is a subsequence of “xabcdef” (but not a substring)

Why 1-minimal instead of global minimum?

Global minimum is typically more expensive to compute (requires
backtracking)

DDMin

Example: Global minimum vs 1-minimal

Mozilla crashes on this input:

<html> <table> jada <select> ... </table> <chs> ...
 <p> ...

</html>

Reason: crashes on <select> or <chs> (but we do not know that yet)!

1-Minimal

Global minimum

public static int checkSum(int[] a)

● is supposed to compute the checksum of an integer array
● gives wrong result, whenever a contains two identical

consecutive numbers (but we don’t know that yet!)
● we have a failed test case, e.g., from protocol transmission:

{1,3,5,3,9,17,44,3,6,1,1,0,44,1,44,0}
● we have a method

boolean isCorrectCheckSum(int [] a, int chksum)

Want to get: {1,1},{3,3} or {44,44}

DDMin

Requires:

interface Test{ boolean test(String s); }

String ddMin(Test t, String input)

Requires: t.test(input) == false and input is non-null
Ensures: A 1-minimal subsequence res of input with respect to t.test(res)

Examples:
ddMin(hasInCorrectCheckSum, “1,3,5,3,9,17,44,3,6,1,1,0,44,1,44,0”) == “44,44”
ddMin(has2Xs, “BBBXCCDDDXD” == “XX”
ddMin(makeMozillaCrash, “<html> ... </html>”) == “<select>”

DDMin - overview

Example: nrChunk = 3

String ddMin(Test p, String inp) { return ddMin(p,inp,min(inp.lenght,2)); }

String ddMin(Test p, String inp, int nrChunks)

● Devide input into chunks
● Cut away a part, does the test still fail? If so, continue without that part
● Increase granularity (* 2) (number of chunks) when no failure occurs when we cut away

any part
● Done when cutting away doesn’t help anymore and nrChunks = length of input

 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 7 8 9 10 1 2 3 4 5 6

DDMin - code

