

Recursive Datatypes and Lists

Types and constructors

Interpretation:

“Here is a new type Suit. This type has four
possible values: Spades, Hearts,
Diamonds and Clubs.”

data Suit = Spades | Hearts | Diamonds | Clubs

Types and constructors

This definition introduces five things:
– The type Suit
– The constructors

Spades :: Suit
Hearts :: Suit
Diamonds :: Suit
Clubs :: Suit

data Suit = Spades | Hearts | Diamonds | Clubs

Types and constructors

Interpretation:

“Here is a new type Rank. Values of this
type have five possible possible forms:
Numeric n, Jack, Queen, King or Ace,
where n is a value of type Integer”

data Rank = Numeric Integer | Jack | Queen | King | Ace

Types and constructors

This definition introduces six things:
– The type Rank
– The constructors

Numeric :: ???
Jack :: ???
Queen :: ???
King :: ???
Ace :: ???

data Rank = Numeric Integer | Jack | Queen | King | Ace

Types and constructors

This definition introduces six things:
– The type Rank
– The constructors

Numeric :: Integer → Rank
Jack :: ???
Queen :: ???
King :: ???
Ace :: ???

data Rank = Numeric Integer | Jack | Queen | King | Ace

Types and constructors

This definition introduces six things:
– The type Rank
– The constructors

Numeric :: Integer → Rank
Jack :: Rank
Queen :: Rank
King :: Rank
Ace :: Rank

data Rank = Numeric Integer | Jack | Queen | King | Ace

Types and constructors

data Rank = Numeric Integer | Jack | Queen | King | Ace

Type
Constructor

Type

Types and constructors

Interpretation:

“Here is a new type Card. Values of this
type have the form Card r s, where r and s
are values of type Rank and Suit
respectively.”

data Card = Card Rank Suit

Types and constructors

This definition introduces two things:
– The type Card
– The constructor

Card :: ???

data Card = Card Rank Suit

Types and constructors

This definition introduces two things:
– The type Card
– The constructor

Card :: Rank → Suit → Card

data Card = Card Rank Suit

Types and constructors

data Card = Card Rank Suit

Type

Constructor
Type

Type

Types and constructors

Interpretation:

“Here is a new type Hand. Values of this
type have two possible forms: Empty or
Add c h where c and h are of type Card
and Hand respectively.”

data Hand = Empty | Add Card Hand

Types and constructors

Alternative interpretation:

“A hand is either empty or consists of a card
on top of a smaller hand.”

data Hand = Empty | Add Card Hand

Types and constructors

This definition introduces three things:
– The type Hand
– The constructors

Empty :: ???
Add :: ???

data Hand = Empty | Add Card Hand

Types and constructors

This definition introduces three things:
– The type Hand
– The constructors

Empty :: Hand
Add :: ???

data Hand = Empty | Add Card Hand

Types and constructors

This definition introduces three things:
– The type Hand
– The constructors

Empty :: Hand
Add :: Card → Hand → Hand

data Hand = Empty | Add Card Hand

Types and constructors

data Hand = Empty | Add Card Hand

Type

Constructor
Type (recursion)

Type

Constructors

Pattern matching

Define functions by stating their results for all
possible forms of the input

size :: Hand → Integer

Pattern matching

Define functions by stating their results for all
possible forms of the input

size :: Hand → Integer
size Empty = 0
size (Add card hand) = 1 + size hand

Interpretation:

“If the argument is Empty, then the result is 0.
If the argument consists of a card card on top
of a hand hand, then the result is 1 + the size
of the rest of the hand.”

Pattern matching

size :: Hand → Integer
size Empty = 0
size (Add card hand) = 1 + size hand

Patterns have two purposes:

1.Distinguish between forms of the input
(e.g. Empty and Add)

2.Give names to parts of the input
(In the definition of size, card is the first card
in the argument, and hand is the rest of the
hand.)

Pattern matching

size :: Hand → Integer
size Empty = 0
size (Add kort resten) = 1 + size resten

Variables can have
arbitrary names

Construction/destruction

When used in an expression (RHS), Add
constructs a hand:

aHand :: Hand
aHand = Add c1 (Add c2 Empty)

When used in a pattern (LHS), Add destructs
a hand:

size (Add card hand) = …

Lists
– how they work

Lists of arbitrary type

• Can we generalize the Hand type to lists with
elements of arbitrary type?

• What to put on the place of the ??

data List = Empty | Add ?? List

Lists of arbitrary type

data List a = Empty | Add a (List a)

A parameterized type

Constructors:
Empty :: ???
Add :: ???

Lists of arbitrary type

data List a = Empty | Add a (List a)

A parameterized type

Constructors:
Empty :: List a
Add :: ???

Lists of arbitrary type

data List a = Empty | Add a (List a)

A parameterized type

Constructors:
Empty :: List a
Add :: a → List a → List a

Constructing lists

• List containing the numbers 1, 2 and 3:

myList1 :: List Integer
myList1 = Add 1 (Add 2 (Add 3 Empty))

• List containing the strings “apa”, “hund”:

myList2 :: List String
myList2 = Add “apa” (Add “hund” Empty)

Constructing lists

• Cannot mix elements of different types:

myList3 = Add True (Add “bil” Empty)

Error: Couldn't match expected type ‘Bool’ with actual
type ‘[Char]’

Lists of arbitrary type

data List a = Empty | Add a (List a)

A parameterized type

Constructors:
Empty :: List a
Add :: a → List a → List a

Built-in lists

The List type is just for demonstration,
Haskell has an equivalent built-in list type
that should be used instead:

List a ≈ [a]

Built-in lists

data [a] = [] | (:) a [a]

Constructors:
[] :: [a]
(:) :: a → [a] → [a]

Not a legal definition,
but the built-in lists are
conceptually defined

like this

Built-in lists

Instead of
Add 1 (Add 2 (Add 3 Empty))

we can use built-in lists and write
(:) 1 ((:) 2 ((:) 3 []))

or, equivalently
1 : 2 : 3 : []

or, equivalently
[1,2,3]

Special syntax for the
built-in lists

Some list operations

• From the Data.List module (also in the
Prelude):

reverse :: [a] -> [a]
 -- reverse a list

take :: Int -> [a] -> [a]
 -- (take n) picks the first n elements

(++) :: [a] -> [a] -> [a]
 -- append a list after another

replicate :: Int -> a -> [a]
 -- make a list by replicating an element

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html
https://downloads.haskell.org/~ghc/latest/docs/html/libraries/base-4.8.1.0/Prelude.html

Some list operations

*Main> reverse [1,2,3]
[3,2,1]

*Main> take 4 [1..10]
[1,2,3,4]

*Main> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]

*Main> replicate 5 2
[2,2,2,2,2]

Strings are lists of characters

type String = [Char]

Prelude> 'g' : "apa"
"gapa"

Prelude> "flyg" ++ "plan"
"flygplan"

Prelude> ['A','p','a']
"Apa"

Type synonym
definition

More on Types

• Functions can have “general” types:
– polymorphism

– reverse :: [a] → [a]

– (:) :: a → [a] → [a]

• Sometimes, these types can be restricted
– Ord a => … for comparisons (<, <=, >, >=, …)

– Eq a => … for equality (==, /=)

– Num a => … for numeric operations (+, -, *, …)

Do’s and Don’ts

isBig :: Integer → Bool
isBig n | n > 9999 = True
 | otherwise = False

isBig :: Integer → Bool
isBig n = n > 9999

guards and
boolean results

Do’s and Don’ts

resultIsSmall :: Integer → Bool
resultIsSmall n = isSmall (f n) == True

resultIsSmall :: Integer → Bool
resultIsSmall n = isSmall (f n)

comparison
with a boolean

constant

Do’s and Don’ts

resultIsBig :: Integer → Bool
resultIsBig n = isSmall (f n) == False

resultIsBig :: Integer → Bool
resultIsBig n = not (isSmall (f n))

comparison
with a boolean

constant

Do’s and Don’ts

fun1 :: [Integer] → Bool
fun1 [] = False
fun1 (x:xs) = length (x:xs) == 10

fun1 :: [Integer] → Bool
fun1 xs = length xs == 10

repeated code

necessary case
distinction?

Do not make
unnecessary case

distinctions

Do’s and Don’ts

fun2 :: [Integer] → Integer
fun2 [x] = calc x
fun2 (x:xs) = calc x + fun2 xs

fun2 :: [Integer] → Integer
fun2 [] = 0
fun2 (x:xs) = calc x + fun2 xs

repeated code

right base
case ?

Make the base
case as simple as

possible

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 41
	Sida 42
	Sida 43

