
Modelling & Datatypes

John Hughes

Software

Software = Programs + Data

Modelling Data

• A big part of designing software is

modelling the data in an appropriate way

• Numbers are not good for this!

• We model the data by defining new types

Modelling a Card Game

• Every card has a suit

• Model by a new type:

data Suit = Spades | Hearts | Diamonds | Clubs

The new

type

The values

of this type

Hearts,

Whist,

Plump,

Bridge, ...

Investigating the new type

Main> :i Suit

-- type constructor

data Suit

-- constructors:

Spades :: Suit

Hearts :: Suit

Diamonds :: Suit

Clubs :: Suit

Main> :i Spades

Spades :: Suit -- data constructor

The new type

The new values

-- constructors

Types and

constructors

start with a

capital letter

Printing Values

• Fix

Main> Spades

ERROR - Cannot find "show" function for:

*** Expression : Spades

*** Of type : Suit

Main> :i show

show :: Show a => a -> String -- class member

Needed to print

values

data Suit = Spades | Hearts | Diamonds | Clubs

 deriving Show

Main> Spades

Spades

The Colours of Cards

• Each suit has a colour – red or black

• Model colours by a type

• Define functions by pattern matching

data Colour = Black | Red

 deriving Show

colour :: Suit -> Colour

colour Spades = Black

colour Hearts = Red

colour Diamonds = Red

colour Clubs = Black

One equation per value

Main> colour Hearts

Red

The Ranks of Cards

• Cards have ranks: 2..10, J, Q, K, A

• Model by a new type
Numeric ranks

data Rank = Numeric Integer | Jack | Queen | King | Ace

 deriving Show

Main> :i Numeric

Numeric :: Integer -> Rank -- data constructor

Main> Numeric 3

Numeric 3

Numeric ranks contain

an Integer

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool

rankBeats _ Ace = False

Matches

anything at all

Nothing beats an Ace

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool

rankBeats _ Ace = False

rankBeats Ace _ = True

Used only if the first

equation does not match.

An Ace beats anything else

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool

rankBeats _ Ace = False

rankBeats Ace _ = True

rankBeats _ King = False

rankBeats King _ = True

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool

rankBeats _ Ace = False

rankBeats Ace _ = True

rankBeats _ King = False

rankBeats King _ = True

rankBeats _ Queen = False

rankBeats Queen _ = True

rankBeats _ Jack = False

rankBeats Jack _ = True

Rank Beats Rank

• When does one rank beat another?

A

K

Q

J

m

n J Q K A

m>n

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool

rankBeats _ Ace = False

rankBeats Ace _ = True

rankBeats _ King = False

rankBeats King _ = True

rankBeats _ Queen = False

rankBeats Queen _ = True

rankBeats _ Jack = False

rankBeats Jack _ = True

rankBeats (Numeric m) (Numeric n) = m > n

Match Numeric 7,

for example

Names the number

in the rank

Examples

Main> rankBeats Jack (Numeric 7)

True

Main> rankBeats (Numeric 10) Queen

False

Testing

We can write tests in GHCi, or we can

automate tests

import Test.QuickCheck

prop_RankBeats a b =

 rankBeats a b || rankBeats b a

*Main> quickCheck prop_RankBeats

*** Failed! Falsifiable (after 12 tests):

Jack

Jack

Correcting the Property

In this case the test is wrong:

import Test.QuickCheck

prop_RankBeats a b =

 a/=b ==> rankBeats a b || rankBeats b a

*Main> quickCheck prop_RankBeats

+++ OK, passed 100 tests.

If a/=b then…

Used only in

QuickCheck

tests

Modelling a Card

• A Card has both a Rank and a Suit

• Define functions to inspect both

data Card = Card Rank Suit

 deriving Show

rank :: Card -> Rank

rank (Card r s) = r

suit :: Card -> Suit

suit (Card r s) = s

A Useful Abbreviation

• Define type and inspection functions

together, as follows

data Card = Card {rank :: Rank, suit :: Suit}

 deriving Show

When does one card beat another?

• When both cards have the same suit, and

the rank is higher

cardBeats :: Card -> Card -> Bool

cardBeats c c'

 | suit c == suit c' = rankBeats (rank c) (rank c')

 | otherwise = False

data Suit = Spades | Hearts | Diamonds | Clubs

 deriving (Show, Eq)

can be written

down simpler...

When does one card beat another?

• When both cards have the same suit, and

the rank is higher

cardBeats :: Card -> Card -> Bool

cardBeats c c' = suit c == suit c’

 && rankBeats (rank c) (rank c')

Intermezzo: Figures

• Modelling geometrical figures

– triangle

– rectangle

– circle

data Figure = Triangle ...

 | Rectangle ...

 | Circle ...

circumference :: Figure -> Double

circumference = ...

Intermezzo: Figures

data Figure = Triangle Double Double Double

 | Rectangle Double Double

 | Circle { radius:: Double}

circumference :: Figure -> Double

circumference (Triangle a b c) = a + b + c

circumference (Rectangle x y) = 2* (x + y)

circumference c = 2 * pi * radius c

Intermezzo: Figures

data Figure = Triangle Double Double Double

 | Rectangle Double Double

 | Circle Double

-- types

Triangle :: Double -> Double -> Double -> Figure

Rectangle :: Double -> Double -> Figure

Circle :: Double -> Figure

square :: Double -> Figure

square s = Rectangle s s

Modelling a Hand of Cards

• A hand may contain any number of cards

from zero up!

• The solution is… recursion!

data Hand = Cards Card … Card

 deriving Show
We can’t use

…!!!

Modelling a Hand of Cards

• A hand may contain any number of cards

from zero up!

– A hand may be empty

– It may consist of a first card and the rest

• The rest is another hand of cards!

data Hand = Empty | Add Card Hand

 deriving Show

A recursive type!

Solve the problem of

modelling a hand with

one fewer cards!

very much like a

list...

When can a hand beat a card?

• An empty hand beats nothing

• A non-empty hand can beat a card if the
first card can, or the rest of the hand can!

• A recursive function!

handBeats :: Hand -> Card -> Bool

handBeats Empty card = False

handBeats (Add c h) card =

 cardBeats c card || handBeats h card

Let’s automate choosing a

card…

How will I test it?

chooseCard :: Card -> Hand -> Card

The card to beat The card we play

prop_chooseCardWinsIfPossible c h =

 handBeats h c == cardBeats (chooseCard c h) c

LIVE CODING!!!

What Did We Learn?

• Modelling the problem using datatypes

with components

• Using recursive datatypes to model things

of varying size

• Using recursive functions to manipulate

recursive datatypes

• An introduction to testing with properties

