Introduction to Monads

Lecture 06A, 2015
David Sands

Last time we saw

A library for building parsers containing:
* An abstract data type Parser a
+ A function
parse ::
Parser a -> String -> Maybe(a,String)

* Basic building blocks for building parsers

We also saw

A specific parser (for Expr) built from scratch,
based on

type Parser a = String -> Maybe (a,String)

Recap of Parsing.hs

[See course home page for API and source]
Parser implements the Monad type class

For now, that just means that we can use “do”
notation to build parsers, just like for IO and Gen

do |0
s <- getlLine
c <- readFile s do Gen

return $ s ++ ¢ n <- elements[1..9]

m <- vectorOf n arbitrary
return $ n:m

do Parser
c <- sat (Celem™ ”;,:”)

ds <- chain digit (char c)
return ds

10 t Gen t Parser t
Instructions for | |« Instructions for ||« Instructions for
interacting with building random parsing
operating values
system

* Run by parse to
parse a string
and produce a

Run by GHC « Run by

runtime system quickCheck to
produce value

generate Maybe t
of type t random values
of type t

Example, a CSV file

Year Make Model Description Price

1997 Ford | E350 ac, abs, moon 3000.00

Example, a CSV file

The above table of data may be represented in CSV format as follows:

1999 Chevy Venture "Extended Edition" 4900.00
Venture "Extended Edition, Year,Make,Model,Description,Price
. ,Ford, ,"ac, abs, moon", o
1999 Chevy Very L \ 5000.00 1997,Ford,E350," b ",3000.00
ery Large 1999,Chevy, "Venture ""Extended Edition""","",4900.00
MUST SELL! 1999,Chevy, "Venture ""Extended Edition, Very
1996 Jeep | Grand Cherokee air, moon roof, 4799.00 Large""",,5000.00
loaded 1996 ,Jeep,Grand Cherokee, "MUST SELL!
gace air, moon roof, loaded",4799.00
wikipedia
€« C &) www.cse.chalmers.se/edu/course/ TDA452 /FPLecture... @ 57| (O [M3 8§ 9 O I =]
= Maintainer dave@chalmers.se
Parsing Safe

Safe-Inferred
data Parser a

gﬁ parse :: Parser a -> String -> Maybe (a, String)
g readsP :: Read a => Parser a
Doc‘(?_ failure :: Parser a
sat :: (Char -> Bool) -> Parser Char
data Pi item :: Parser Char
The ¢ char :: Char -> Parser Char
digit :: Parser Char
B Insta (+++) :: Parser a -> Parser a -> Parser a
Mor (<:>) :: Parser a -> Parser [a] -> Parser [a]
Fur (>->) :: Parser a -> Parser b -> Parser b
Apr (<-<) :: Parser b -> Parser a -> Parser b
oneOrMore :: Parser a -> Parser [a]
zeroOrMore :: Parser a -> Parser [a]
parse

chain :: Parser a -> Parser b -> Parser [a]
Runs the parser on the given string to return maybe a thing and a

Example & Implementation

Terminology

* A “monadic value” is just an expression whose
type is an instance of class Monad

* ‘tis a monad” means t is an instance of the
class Monad

* We have often called a monadic value an
‘instruction”. This is not standard terminology
— but sometimes they are called “actions”

Monads

David Sands

NS

Monads and do notation Update, As of GHC 7.10

* To be an instance of class Monad you need Monad is a subclass of Applicative (which is a
(as a minimal definition) operations >>= and subclass of Functor)
return The class itself is a bit simpler — you just need to
class Monad m where define >>=. For the rest you can just write:
(>i=) iima->(a->mb) ->mb import Control.Applicative (Applicative(..))
return ::

a->ma . "
Default implementations import Control.Monad (liftMm, ap)
(>>) ttma->mb ->mb instance Functor MyMonad where fmap = 1iftM

Xy =xo= oy instance Applicative MyMonad where

fail :: String -> m a pure = -- move defn of return here
fail msg = error msg (<*>) = ap

Monad

» To be an instance of class Monad you need
two operations: >>= and return

instance Monad Parser where
return = succeed
(>>=) = (>*>)
-- (>->) is equivalent to (>>)

*Can understand and use do notation

* Why bOther? ﬁﬂrst example of a home-grown monad

The truth about Do Example
» Do syntax is just a shorthand:
foo :: I0 ()
doactl == | ct1 »> act2 |=7 |actl »>= _ -> act2 foo ='d0 i
act2 - filename <- getLine
contents <- readFile filename
putStrLn contents
do v <- actl == |actl >>= \v -> act2
act2

The truth about Do The truth about Do

Full translation (1) Full Translation (Il): Let and pattern matching

do actl — actl >> do .. do let p = e —— |let p = e in
@ actn an do ..
actn actn actn

do v <- actl —— |actl >>= \v -> do .. do pattern <- actl let f pattern = do ..
- actn == ?ctn
Y0 i f _ = fail “Error

in actl >»>= f
do actn == actn

Pictures from a blog post about

functors, applicatives and monads

http://adit.io/posts/2013-04-17-
functors, applicatives, and_monads_in_pictures.html

Aditya Y. Bhargava

getLine I0 String

reaAF«lLé’_

readFile FilePath I0 String putStrLn String I0

All three functions take a value (or no value) and
produce an 10 “wrapped” value

The function >>= allows us to join them together

getLine >>= readFile >>= putStrLn

Z,USF T To
READ A fILE

Here is a function

They can be composed

Here is a function

half x = if even x
then Just (x “div’ 2)
else Nothing

™

What if we feed it a wrapped value? >>=
e g
’d}
&
We need to use >>= to shove our wrapped value into the function
>>= >>=

Here’s how it works:

ma = (@ = mb = mb

Just 3 half >: '7\ A N
Nothing ~“rares

Just 4 half 1.»= 2.AD A 3 AND T
Just 2 A MONAD AT :

Nothing half St FoNCTION RETUENS
Nothing Qe ReTURNS A MONAD A MonAD

(e haD
What's happening inside? Monad is another typeclass. Here’s a partial definition:
class Monad m where
ma - a->mb) ->mb
>>=

4 . BWD UNWRAPS
THE VALUE

3 WRATPED VAE
‘ comes ouT

Just 20 >>= half >>= half
>>= half

Instance Monad Maybe

* Maybe is a very simple monad

instance Monad Maybe where
Just x >>= k = k x

Nothing >>= _ = Nothing
return = Just
fail s = Nothing

Although simple it can be useful...

it

Betalstation Ml

Congestion Charge Billing

Registration number used to find the
Personnummer of the owner

carRegister :: [(RegNr,PNr)]
Personnummer used to find the name of the
owner

nameRegister :: [(PNr,Name)]

Name used to find the address of the owner
addressRegister :: [(Name,Address)]

Example:
Congestion Charge Billing

String ; type PNr = String

type CarReg =
= String ; type Address = String

type Name

carRegister :: [(CarReg,PNr)]
carRegister
= [("IBD @07","750408-0909"), ...]

nameRegister :: [(PNr,Name)]
nameRegister
= [("750408-0909","Dave“), ...]

addressRegister :: [((Name,PNr),Address)]
addressRegister =
[(("Dave","750408-0909"),"42 Streetgatan\n Askim")

5 e

Example:
Congestion Charge Billing

With the help of
lookup :: Eq a => a -> [(a,b)] -> Maybe b
we can return the address of car owners

billingAddress :: CarReg -> Maybe (Name, Address)
billingAddress car =
case lookup car carRegister of
Nothing -> Nothing
Just pnr -> case lookup pnr nameRegister of
Nothing -> Nothing
Just name ->
case lookup (name,pnr) addressRegister of
Nothing -> Nothing
Just addr -> Just (name,addr)

Example:
Congestion Charge Billing

Using the fact that Maybe is a member of class Monad
we can avoid the spaghetti and write:

billingAddress car = do
pnr <- lookup car carRegister
name <- lookup pnr nameRegister
addr <- lookup (name,pnr) addressRegister
return (name,addr)

Example:
Congestion Charge Billing

Unrolling one layer of the do syntactic sugar:

billingAddress car ==

lookup car carRegister >>= \pnr ->

do
name <- lookup pnr nameRegister
addr <- lookup (name,pnr) addressRegister
return (name,addr)

* lookup car carRegister gives Nothing
then the definition of >>= ensures that the whole
result is Nothing

* return is Just

Summary

* We can use higher-order functions to build
Parsers from other more basic Parsers.

» Parsers can be viewed as an instance of
Monad

* We can build our own Monads!
— A lot of "plumbing” is nicely hidden away

— The implementation of the Monad is not visible
and can thus be changed or extended

10 t Gen t Parser t

* Instructions for ||« Instructions for * Instructions for

interacting with building random parsing

operating values

system * Run by parse

Runby GHC | |. Run by to parse a

runtime system | | quickCheck to string and

produce value generate Maybe produce

of type t random values a value of type
of type t t

Three Monads

Code

» Parsing.hs

— module containing the parser monad and simple
parser combinators.

See course home page

* We can build our own Monads!
— A lot of "plumbing” is nicely hidden away
— A powerful pattern, used widely in Haskell

— A pattern that can be used in other languages, but
syntax support helps
« F# computation expressions
» Scala

More examples

« http://adit.io/posts/2013-06-10-three-useful-
monads.html

« stack (slides/video from last year)

Another Example: A Stack

+ A Stack is a stateful object

+ Stack operations can push values on, pop
values off, add the top elements

type Stack = [Int]
newtype StackOp t = StackOp (Stack -> (t,Stack))

-- the type of a stack operation that produces
-- a value of type t

pop :: StackOp Int

push :: Int -> StackOp ()

add :: StackOp ()

Running a StackOp

type Stack = [Int]
newtype StackOp t = StackOp (Stack -> (t,Stack))

run (StackOp f) = f

-- run (StackOp f) state = f state

Operations

pop :: StackOp Int
pop = StackOp $ \(x:xs) —> (x,xs) —— can fail

push :: Int —> StackOp ()
push i = StackOp $ \s —> ((),1i:s)

add :: StackOp ()
add = StackOp $ \(x:y:xs) —> ((),x+y:xs) —— can fail
|

I'd)

Building a new StackOp...

swap :: StackOp ()
swap = StackOp $ \s ->
let (x,s') = run pop s
(y,s'") = run pop s'
(_,s""") = run (push x) s'*
(_ys'"""") = run (push y) s'"’
in (L, s''"")

No thanks!

StackOp is a Monad

« Stack instructions for producing a value

- (>>=) :: StackOp a —> (a —> StackOp b) —> StackOp b
instance Monad StackOp
where return n = StackOp $ \s —> (n,s)
sop >>= f = StackOp $ \s —>
let (i,s') = run sop s
in run (f i) s

So now we can write...

swap = do
a <- pop
b <- pop
push a
push b

Stack t Maybe t
» Stack * Instructions for
instructions either
producing a producing a
value of type t value or
+ Run by run nothing

* Run by ?? (not
an abstract
data type)

Two More Monads

1(

