CHALMERS TEKNISKA HOGSKOLA Monday, October 18th, 2004
Datavetenskap Functional Programming
Jan-Willem Roorda INN040/TDA450

Exam Functional Programming

Monday, October 18th, 2004, 8.30-12.30.
Examiner: John Hughes.

Questions during the exam will be answered by Jan-Willem Roorda, tel 031-
7721023.

Permitted aids:
English-Swedish or English-other language dictionary.

e Begin each question on a new sheet. Write your personal number on every
sheet.

e You may lose marks for unnecessarily long, complicated, or unstructured
solutions.

e Full marks are awarded for solutions which are elegant, efficient, and cor-
rect.

e You are free to use any Haskell standard functions, including those whose
definitions are attached, unless the question specifically forbids you to do
S0.

e You may use the solution of an earlier part of a question to help solve a
later part, even if you did not succeed in solving the earlier part.

e The exam consists of 4 questions. Chalmers students need 23 points to
pass the exam. GU students need 27 points to pass.

1.

(a)
(b)
(c)

(d)

Define the concept of lazy evaluation.
Give two advantages and one disadvantage of lazy evaluation.

Give an example of an expression that terminates under lazy evalu-
ation, but would not terminate under eager evaluation.

The Fibonacci numbers are given by:
FO = 0
R =1
Fn+2 = F,+ Fn+1

Give an efficient definition of the infinite list of Fibonacci numbers.

A list xs is a prefix of a list ys if ys == xs ++ zs for some (possibly
empty) list zs. For example: "add" is a prefix of "address". But
"dress" is not a prefix of "address". Define a function

prefix :: Eq a => [a] -> [a] -> Bool
such that prefix xs ys returns True if xs is a prefix of ys, and

returns False otherwise.

(You are not allowed to use the function isPrefix0f in your defini-
tion of prefix.)

A list xs is a subsequence of a list ys if ys == as ++ xs ++ bs for
some (possibly empty) lists as and bs. For example, "dre" is a subse-
quence of "address". But "adds" is not a subsequence of "address".

Define a function
subsequence :: Eq a => [a] -> [a] -> Bool

such that subsequence xs ys returns True if xs is a subsequence of
ys, and returns False otherwise.

Define a function grep
grep :: String -> String -> String

such that grep xs ys returns every line from ys that contains xs as
a subsequence.

For example:

grep "ell" "hello\nclouds\nhello world\nthe sky is blue"

"hello\nhello world\n"

(4 p)

(5 p)

(3 p)

3. This question concerns map colouring: the problem of choosing colours for

each country on a map, so that no two neighbouring countries are assigned
the same colour. It is known that four colours are enough to colour any
planar map.

We shall represent countries and colours by strings, and define
type Colour = String

type Country = String

colours = ["red","yellow","blue","green"]

countries = ["Norway","Sweden","Finland",'"Denmark"]

We shall consider a map of Scandinavia as an example:

/o \
/ I __
/o I \
/ I \
/7 -l I
(. / \ I
(. I I I
(. I I I
/ I I I I
/ N | S| I F |
I I I I I
____/l I \ooo- /
- I I
/N I
[1 /NI I
(0] I N
(I VA
(I

We shall consider that Sweden and Denmark are neighbours (because of
the bridge between Sweden and Denmark), and so must be assigned dif-
ferent colours.

(a) Define a function
neighbours :: Country -> [Country]

which given a country name, returns a list of all the neighbouring
countries. Your definition need only work for Scandinavia: it is in
this function definition that you encode the information in the map
above.

In the rest of the question you should not refer to particular countries
except via the function neighbours and the variable countries. The

(a)

rest of your code should continue to work even if you change these
definitions to represent a different map.

We will represent an assignment of colours to countries as a colouring:
type Colouring = [(Country, Colour)]

For example, [("Norway","blue"), ("Denmark","red")] records the
facts that Norway has been coloured blue, and Denmark has been
coloured red; other countries have no colour as yet.

Define a function

safeColour :: Colouring -> Country -> Colour -> Bool

which returns True if the given colouring can be extended by colour-
ing the given country with the given colour, without assigning two
neighbours the same colour. For example,

safeColour [("Norway","blue"),("Denmark","red")]
"Sweden"
llgreenll
== True
because none of Sweden’s neighbours is already coloured green.
Define a function

colour :: [Country] -> [Colouring]

which returns a list of all the possible ways to colour the given coun-
tries, so that no neighbours are assigned the same colour.

4. In this question we will look at different kinds of trees.

Consider the following type for binary trees.

data Tree a = Node a (Tree a) (Tree a)
| Leaf a

i. Write the tree

9 3
as a value of the data type above.
ii. Define a function elemTree that checks whether an element ap-

pears in a tree. (Warning: do not assume the tree is ordered.)
Also give the type of this function. For example:

elemTree 3 (Node 2 (Leaf 1) (Leaf 3))
== True

elemTree ’z’ (Node ’d’ (Leaf ’a’) (Leaf ’c’))
== False

(4 p)

(6 p)

(1p)

iii.

3p)
Define a function
mapTree :: (a -> b) -> Tree a -> Tree b
such that mapTree f t gives the tree resulting from applying the
function f to each element in t. For instance:
mapTree (+1) (Node 1 (Leaf 1) (Leaf 3))
== Node 2 (Leaf 2) (Leaf 4) (3 p)

(b) Now, consider this type of trees.

data GTree a = GNode [GTree a]
|

i

ii.

iii.

iv.

GLeaf a
Write the tree
/\
/ N\
/I\N 5
923
as a value of the data type above. (1p)

Define a function gSum :: GTree Int -> Int that sums all the
elements at the leafs of a GTree of integers. For instance:

gSum (GNode [GLeaf 2, GLeaf 3, GNode [GLeaf 1,GLeaf 2]])

Define a function flatten :: GTree a -> [a] that flattens a
Gtree to a list. That is, flatten t returns a list containing all
elements appearing at the leafs of t. For instance:

flatten (GNode [GLeaf 2, GLeaf 3, GNode [GLeaf 1,GLeaf 2]])
== [273’112] (4 p)
Give an instance definition that makes the type Gtree a an in-

stance of the Eq class for every type a that is in the Eq class.
(Equality should be defined in the straight-forward way.) (6 p)

