
l Page 1

TDA361 - Computer graphics

Lab 2 - Textures

Giving texture coordinates to each vertex

Set Lab2 as the startup project and run it. You will see a single
colored quad drawn on screen. Now, take a look at the code and
you will notice two large differences from the previous lab.

• Assignment: The quad is drawn as an indexed mesh. That
means that instead of sending six vertices to the glDrawArrays
function as in Lab1, a vertex buffer object containing the four
vertices of the quad is created, and a second buffer object
containing indices into this list is sent to the glDrawElements
function. What is the point of this?

__

__

• Assignment: In the previous lab we drew the triangles essentially in 2D. Now, the four vertices are
defined in three dimensional space and a projection matrix is sent along to the vertex shader. The
perspective matrix is created with the following code:

float4x4 projectionMatrix = perspectiveMatrix(fov, aspect_ratio, near, far);

What are each of these arguments for (draw in the picture if it will help you explain)?

field of view: _____________________________

aspect ratio: _____________________________

near plane: _____________________________

far plane: _____________________________

This quad may not look like much yet, but with a little
imagination it could be the floor in a corridor of some old Wolfenstein game.Let’s pretend it is. In this lab,
we are going to make the floor look better by mapping a texture map to the floor

The first thing we need to do is to give each vertex a texture coordinate (often called uv-coordinate). This is
done the same way as giving a vertex a position or a color. For starters, we will simply map the corners of
the texture map to the corners of the quad. Just below where the vertex positions are defined, define the
texture coordinates:

l Page 2

 float texcoords[] = {
 0.0f, 0.0f, // (u,v) for v0
 0.0f, 1.0f, // (u,v) for v1
 1.0f, 1.0f, // (u,v) for v2
 1.0f, 0.0f // (u,v) for v3
 };

Now we need to send these coordinates to the graphics board. Generate a buffer that will be used by
OpenGL to store the texture coordinates (read more about buffer objects in the OpenGL 3.0 spec, §2.9):

 glGenBuffers(1, &texcoordBuffer);
 glBindBuffer(GL_ARRAY_BUFFER, texcoordBuffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(texcoords), texcoords,
 GL_STATIC_DRAW);

The variable texcoordBuffer (of type GLuint) is a number that identifies the buffer object. Don’t forget
to declare it together with the other buffer objects.
We will also need to access the texture coordinates in the vertex and fragment shaders. Locate the place
where the indices of the vertex position and vertex color attributes are set, and add one for the texture
coordinate attribute (read more about vertex attributes in the OpenGL 3.0 spec §2.20):

 glBindAttribLocation(shaderProgram, 0, "position");
 glBindAttribLocation(shaderProgram, 1, "color");
 glBindAttribLocation(shaderProgram, 2, "texCoordIn");

We need to instruct OpenGL to take the values for texCoordIn from the texcoords-buffer that we
created above. Do this by adding, near the end of initGL():

 glBindBuffer(GL_ARRAY_BUFFER, positionBuffer);
 glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
 glBindBuffer(GL_ARRAY_BUFFER, colorBuffer);
 glVertexAttribPointer(1, 3, GL_FLOAT, false, 0, 0);
 glBindBuffer(GL_ARRAY_BUFFER, texcoordBuffer);
 glVertexAttribPointer(2, 2, GL_FLOAT, false, 0, 0);

The first parameter tells that attribute with index 2 will get its values from texcoordBuffer. The second and
third parameter tells that each element consists of two floats. In addition, we need to enable the texcoord-
array. Do this by adding:

 glEnableVertexAttribArray(0);
 glEnableVertexAttribArray(1);
 glEnableVertexAttribArray(2);

Loading the texture

To read a texture image from a file, we use DevIL, which is an open library for reading images of most
formats (see http://openil.sourceforge.net/docs/index.php). We need to include ilutil.h and initialize DevIL.
This latter is already done at the top of function initGL() by the two calls to:

 ilInit(); // initiate devIL (developers Image Library)
 ilutRenderer(ILUT_OPENGL); // initiate devIL

At the end of function initGL() is a good place to read the texture from file and hand it to OpenGL, so add
this line:

 texture = ilutGLLoadImage("floor.jpg");

Note that texture is a global variable, declare it at the top of main.cpp (it shall be an GLuint). The
function ilutGLLoadImage returns an id, internally generated by calling
glGenTextures(1,&texture), (read all about textures in OpenGL 3.0 spec §3.9).

l Page 3

Drawing the floor with texture

In the display()function, we need to make sure that texture unit 0 is associated with our texture (which
has its texture id stored in variable texture). Therefore, add this call, just before the call to
glDrawElements():

 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, texture);

In the vertex shader, we need to declare a variable for the incoming texture coordinate, texCoordIn,
and also a variable for the outgoing interpolated texture coordinate to the fragment shader. Add these lines
to the top of the vertex shader in file simple.vert:

in vec2 texCoordIn; // incoming texcoord from the texcoord array
out vec2 texCoord; // outgoing interpolated texcoord to fragshader

At the bottom of the main()-function in the vertex shader, add

texCoord = texCoordIn;

to send the texture coordinate to the fragment shader. For the fragment shader, the value in texCoord
will be interpolated from the four values of texCoord that are output by the vertex shader for the four
vertices of our quad (vertex, and other, shaders are described in the glsl 1.30 spec, and the usage is
covered in OpenGL 3.0 spec §2.20).

In the fragment shader (file simple.frag) add a so called sampler. I.e., inform that the shader will use a
texture that is connected to texture unit 0. In addition, add the variable for the incoming texture coordinate
from the vertex shader. You do this by adding

uniform sampler2D colortexture;
in vec2 texCoord;

to the fragment shader. (Add to an empty line below the line containing precision highp float in
file simple.frag). Also, replace

fragmentColor = vec4(outColor, 1.0);
in main() with

 fragmentColor = texture2D(colortexture, texCoord.xy);

in order to fetch the color from the texture, instead.

We need to set the value of “colortexture” to zero, so that colortexture corresponds to texture unit 0 (a
value of 1 will associate it with texture unit 1 and so on…). Do this, by adding the following two lines to the
end of function initGL():

 // Bind the shaders

glUseProgram(shaderProgram);
// Get the location in the shader for uniform “colortexture”

 int texLoc = glGetUniformLocation(shaderProgram, "colortexture");
 // Set colortexture to 0, to associate it with texture unit 0
 glUniform1i(texLoc, 0);

Fragment, and other, shaders are described in the glsl 1.30 spec, and the usage is covered in OpenGL 3.0
spec §3.12.

l Page 4

Now run the program again and enjoy the textured floor.
Not exactly what we wanted is it? The floor is much longer
than it is wide (20 units wide and 300 units long to be
exact) but we map the square texture one-to-one on the
quad, so the texture will be very stretched out. Instead, lets
repeat the texture several times in the z-direction. Change
the texture coordinates as follows:

 float texcoords[] = {
 0.0f, 0.0f,
 0.0f, 15.0f,
 1.0f, 15.0f,
 1.0f, 0.0f
 };

Then we need to tell OpenGL what to do with texture coordinates outside the (0,1) range. Add the
following lines right after loading the texture:

 texture = ilutGLLoadImage("floor.jpg");
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, texture);
 //Indicates that the active texture should be repeated,
 //instead of for instance clamped, for texture coordinates >1 or <0.
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

The call to glActiveTexture(GL_TEXTURE0) specifies that the following commands affect texture unit
0. The call to glBindTexture(GL_TEXTURE_2D, texture) associates texture unit 0 with the image
with id= texture. The next two lines tell OpenGL that texture coordinates above 1.0 or below 0.0 shall
simply wrap around.
Run the program again.

Texture filtering

To improve the image we are now going to look at texture
filtering. A problem we have run into is that parts of the
texture are being shrunk to a much smaller size than the
original image. So, when fetching a color from the texture
for a pixel, the texture coordinate could actually map to any
texel in a large area on the texture, but it will simply pick the
texel on the texture coordinate that the middle of the pixel
maps to. A simple way to improve the result is to use
mipmapping.
Right after the glTexParameter calls, add the lines:

 glGenerateMipmap(GL_TEXTURE_2D);

// Sets the type of filtering to
// be used on magnifying and
 // minifying the active texture. These are the nicest available options.

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR_MIPMAP_LINEAR);

l Page 5

The call to glGenerateMipmap()generates the mipmap levels on the bound textures. The following two
lines tell OpenGL to use the mipmap when minimizing a texture and to do linear filtering when magnifying.
Run the program again.

You will notice that the image is now a lot less noisy, but that its mostly a blur far away. Add this line as
well:

 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 16.0f);

which enables an extension, not part of core OpenGL 3. Nevertheless, this extension is available on your
machines (this and other extensions are listed in the OpenGL registry). It enables the nicest level of
anisotropic filtering. (Note that glTexParameter sets state per texture object and does so for the
currently bound texture – in our case texture which is bound by the call to glBindTexture above.)
What happens with the final image and why?

Transparency

No fake wolfenstein scene is complete without an explosion. We will create one by drawing a new quad
and texture it with a picture of an explosion. Create a new vertex array with data for positions and texture
coordinates so it looks something like the image below.

Also load a new texture (“explosion.png”) and use it when drawing the new quad.

When you are done, you should see something like the image to the
right. This texture has an alpha channel as well as color channels. The
alpha channel simply says how transparent each texel is. To get the
transparent effect, we will have to enable blending (see OpenGL 3.0
spec §4.1). Add the following lines in function display() somewhere
before the call to your second glDrawElements ();. The first line enables
blending. The second specifies how the blending should be done. With
these parameters the destination will receive an interpolated color value of
α*source color + (1- α)*destination color, which faithfully corresponds to the
behavior of transparency.

 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Note that to get correct transparent behavior, all overlapping transparent objects/polygons should be
rendered in back-to-front order. It is common to first render all non-transparent objects in any order, and
then sort all transparent objects/polygons and render them last. This transparency calculation does not
require the presence of any alpha channel in the framebuffer.

Now run the program again and enjoy the exciting scene.

When done, show your result to one of the assistants. Have the finished program running and be
prepared to answer some questions about what you have done.

