
Advanced Functional
Programming

Chalmers & GU

2015

Patrik Jansson
(slides by Jansson, Norell & Bernardy)

This Course

• Advanced Programming Language
Features
– Type systems
– Programming techniques

• In the context of Functional Programming
– Haskell (and a touch of Agda)

• Applications
– Signals, graphics, web programming
– Domain Specific Languages

Self Study

• You need to read yourself
• Find out information yourself
• Solve problems yourself

• With a lot of help from us!
– All information is on the web (soon;-)
– Discussion board (afp15 google group)
– Office hours: Mon. 15-16 (PJ), Wed. 10-12

(DR), ...

Organization

• 2 Lectures per week
– Including a few guest lectures
– and two exercise sessions.

• 3 Programming Assignments (labs)
– Done in pairs (can use disc. group to pair up)
– No scheduled lab time

• 1 Written Exam

Final grade: 60% labs + 40% exam

Getting Help
• Course Homepage

– Should have all information
– Complain if not!

• Discussion Board (afp15 google groups)
– Everyone should become a member
– Discuss general topics, find lab partner, etc.
– Don't post (partial or complete) lab solutions

• e-mail teachers (Patrik + Dan + Anton)
– Organizational help, lectures, etc. (Patrik)
– Specific help with programming labs (Dan + Anton)

• Office Hours
– A few times a week, time: Mon. 15-16, Wed. 10-12, ...

Recalling Haskell

• Purely Functional Language
– Referential transparency

• Lazy Programming Language
– Things are evaluated at most once

• Advanced Type System
– Polymorphism

– Type classes
– ...

Functions vs. Instructions

f :: String -> Int

g :: String -> IO Int

vs

Compare:
Only the knowledge
about the string is

needed to understand
the result…

Anything can be used to
compute the result:
Reading from files,

randomness, user input…!

Functions vs. Instructions

f :: String -> Int

g :: String -> IO Int

vs

Compare:

Moreover, anything can be
modified or changed!

But... The
“Action”

depends solely
on the string

Programming with IO

hello :: IO ()
hello =
 do putStrLn ”Hello! What is your name?”
 name <- getLine
 putStrLn (”Hi, ” ++ name ++ ”!”)

Programming with IO

printTable :: [String] -> IO ()
printTable xs = prnt 1 xs
 where
 prnt i [] = return ()
 prnt i (x:xs) = do putStrLn (show i ++ ”:” ++ x)
 prnt (i+1) xs

printTable :: [String] -> IO ()
printTable xs =
 sequence_ [putStrLn (show i ++ ":" ++ x)
 | (x,i) <- xs `zip` [1..length xs]
]

sequence_ :: [IO a] -> IO ()

IO actions are
first class.

Evaluation order

fun :: Maybe Int -> Int
fun mx | mx == Nothing = 0
 | otherwise = x + 3
 where
 x = fromJust mx

Could fail… What
happens?

Another Function

expn :: Integer -> Integer
expn n | n <= 1 = 1
 | otherwise = expn (n-1) + expn (n-2)

Main> choice False 17 (expn 99)
17

choice :: Bool -> a -> a -> a
choice False f t = f
choice True f t = t

Without delay…

Laziness

• Haskell is a lazy language
– Things are evaluated at most once

– Things are only evaluated when they are
needed

– Things are never evaluated twice

(We will now explore what this means.)

Understanding Laziness

• Use error ”message” or undefined to see
whether something is evaluated or not
– choice False 17 undefined
– head [3,undefined,17]
– head (3:4:error ”no tail”)

– head [error ”no first elem”,17,13]
– head (error “no list at all”)

Lazy Programming Style

• Separate where the computation of a
value

– is defined
– is performed

Modularity!

When is a Value ”Needed”?

strange :: Bool -> Integer
strange False = 17
strange True = 17

Main> strange undefined
Program error: undefined

An argument is
evaluated

when a pattern
match occurs

But also primitive
functions evaluate
their arguments

At Most Once?

foo :: Integer -> Integer
foo x = f x + f x

bar :: Integer -> Integer -> Integer
bar x y = f 17 + x + y

Main> bar 1 2 + bar 3 4
310

f 17 is
evaluated

twice

f x is
evaluated

twice

Quiz: How to
avoid

recomputation?

At Most Once!

foo :: Integer -> Integer
foo x = fx + fx
 where
 fx = f x

bar :: Integer -> Integer -> Integer
bar x y = f17 + x + y

f17 :: Integer
f17 = f 17

So... bindings
are evaluated
at most once...

... in their scope.
So, top level ones are

really evaluated at
most once!

Infinite Lists

• Because of laziness, values in Haskell can
be infinite

• Do not compute them completely!
• Instead, only use parts of them

Examples

• Uses of infinite lists
– take n [3..]
– xs `zip` [1..]

Example: PrintTable

printTable :: [String] -> IO ()
printTable xs =
 sequence_ [putStrLn (show i ++ ":" ++ x)
 | (x,i) <- xs `zip` [1..]
]

lengths adapt
to each other

Iterate

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

Main> iterate (2*) 1
[1,2,4,8,16,32,64,128,256,512,1024,...

Other Handy Functions

repeat :: a -> [a]
repeat x = x : repeat x

cycle :: [a] -> [a]
cycle xs = xs ++ cycle xs

Quiz: How to
define repeat
with iterate?

Alternative Definitions

repeat :: a -> [a]
repeat x = iterate id x

cycle :: [a] -> [a]
cycle xs = concat (repeat xs)

Problem: Replicate

replicate :: Int -> a -> [a]
replicate = ?

Main> replicate 5 ’a’
”aaaaa”

Problem: Replicate

replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

Problem: Grouping List Elements

group :: Int -> [a] -> [[a]]
group = ?

Main> group 3 ”apabepacepa!”
[”apa”,”bep”,”ace”,”pa!”]

Problem: Grouping List Elements

group :: Int -> [a] -> [[a]]
group n = takeWhile (not . null)
 . map (take n)
 . iterate (drop n)

. connects
”stages” --- like

Unix pipe symbol |

Problem: Prime Numbers

primes :: [Integer]
primes = ?

Main> take 4 primes
[2,3,5,7]

Problem: Prime Numbers

primes :: [Integer]
primes = sieve [2..]
 where
 sieve (p:xs) = p : sieve [y | y <- xs, y `mod` p /= 0]

Commonly mistaken for
Eratosthenes' sieve1

1 Melissa E. O’Neill, The Genuine Sieve of Eratosthenes. JFP 2008.

Infinite Datastructures

data Labyrinth
 = Crossroad
 { what :: String
 , left :: Labyrinth
 , right :: Labyrinth
 }

How to make an
interesting
labyrinth?

Infinite Datastructures

labyrinth :: Labyrinth
labyrinth = start
 where
 start = Crossroad ”start” forest town
 town = Crossroad ”town” start forest
 forest = Crossroad ”forest” town exit
 exit = Crossroad ”exit” exit exit

What happens
when we print this

structure?

Laziness Conclusion

• Laziness
– Evaluated at most once

– Programming style

• Do not have to use it
– But powerful tool!

• Can make programs more ”modular”

Type Classes

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

class Eq a => Ord a where
 (<=) :: a -> a -> Bool
 (>=) :: a -> a -> Bool

sort :: Ord a => [a] -> [a]

instance Eq Int where ...
instance Eq a => Eq [a] where ...

Type Classes

class Finite a where
 domain :: [a]

What types could
be an instance of

this class?
Can you make

functions instance
of Eq now?

Focus of This Course

• Libraries ~= Little Languages
– Express and solve a problem

– in a problem domain

• Programming Languages
– General purpose
– Domain-specific

• Description languages

• Embedded Language
– A little language implemented as a library

E.g.
JavaScript

E.g. HTML,
PostScript

Little
languages

Typical Embedded Language

• Modelling elements in problem domain
• Functions for creating elements

– Constructor functions

• Functions for modifying or combining
– Combinators

• Functions for observing elements
– Run functions

