
Software Engineering using Formal Methods
Model Checking with Temporal Logic

Wolfgang Ahrendt

22nd September 2015

SEFM: Model Checking with Temporal Logic /GU 150922 1 / 32

Model Checking with Spin

SPIN

model
name.pml

correctness
properties

correctness
properties

verifier
pan.c

C
compiler

executable
verifier

pan

“errors: 0”
failing

run
model.trail

interactive /random/ guided

simulation

-a

or

ei
th

er
SEFM: Model Checking with Temporal Logic /GU 150922 2 / 32

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model using

I assertion statements 4
I meta labels

I end labels 4
I accept labels (briefly)
I progress labels

stating properties outside model using

I never claims (briefly)
I temporal logic formulas (today’s main topic)

SEFM: Model Checking with Temporal Logic /GU 150922 3 / 32

Preliminaries

1. Accept labels in Promela ↔ Büchi automata

2. Fairness

SEFM: Model Checking with Temporal Logic /GU 150922 4 / 32

Preliminaries 1: Acceptance Cycles

Definition (Accept Location)

A location marked with an accept label of the form “acceptxxx:” is
called an accept location.

Accept locations can be used to specify cyclic behavior

Definition (Acceptance Cycle)

A run which infinitely often passes through an accept location is called
an acceptance cycle.

Acceptance cycles are mainly used in never claims (see below), to define
forbidden infinite behavior

SEFM: Model Checking with Temporal Logic /GU 150922 5 / 32

Preliminaries 2: Fairness

Does this Promela model terminate in each run? Demo: start/fair.pml

byte n = 0;

bool flag = f a l s e ;

active proctype P() {

do :: flag -> break
:: e l se -> n = 5 - n

od
}

active proctype Q() {

flag = true
}

Termination guaranteed only if scheduling is (weakly) fair!

Definition (Weak Fairness)

A run is called weakly fair iff the following holds:
each continuously executable statement is executed eventually.

SEFM: Model Checking with Temporal Logic /GU 150922 6 / 32

Model Checking of Temporal Properties

Many correctness properties not expressible by assertions

I all properties that involve state changes

I temporal logic expressive enough to characterize many (but not all)
properties

In this course: “temporal logic” synonymous with “linear temporal logic”

Today: model checking of properties formulated in temporal logic

SEFM: Model Checking with Temporal Logic /GU 150922 7 / 32

Beyond Assertions

Locality of Assertions

Assertions talk only about the state at their location in the code

Example

Mutual exclusion enforced by adding assertion to each critical section

critical ++;

assert (critical <= 1);

critical --;

Drawbacks

I no separation of concerns (model vs. correctness property)
I changing assertions is error prone (easily out of sync)
I easy to forget assertions:

correctness property might be violated at unexpected locations
I many interesting properties not expressible via assertions

SEFM: Model Checking with Temporal Logic /GU 150922 8 / 32

Temporal Correctness Properties

Examples of properties more conveniently expressed as
global properties than as assertions:

Mutual Exclusion
“critical <= 1 holds throughout any run”

Array Index within Bounds (given array a of length len)
“0 <= i <= len-1 holds throughout any run”

Examples of properties impossible to express as assertions:

Absence of Deadlock
“Whenever several processes try to enter their critical
section, eventually one of them does so.”

Absence of Starvation
“Whenever one process tries to enter its critical section,
eventually that process does so.”

All of these are temporal properties ⇒ use temporal logic
SEFM: Model Checking with Temporal Logic /GU 150922 9 / 32

Boolean Temporal Logic

Numerical variables in expressions

I Expressions such as i <= len-1 contain numerical variables

I Propositional LTL as introduced so far only knows propositions

I Slight generalisation of LTL required

In Boolean Temporal Logic atomic building blocks are
Boolean expressions over Promela variables

SEFM: Model Checking with Temporal Logic /GU 150922 10 / 32

Boolean Temporal Logic over Promela

Set ForBTL of Boolean Temporal Formulas (simplified)

I all global Promela variables and constants of type bool/bit

are ∈ ForBTL
I if e1 and e2 are numerical Promela expressions, then all of

e1==e2, e1!=e2, e1<e2, e1<=e2, e1>e2, e1>=e2 are ∈ ForBTL
I if P is a process and l is a label in P, then P@l is ∈ ForBTL

(P@l reads “P is at l”)

I if φ and ψ are formulas ∈ ForBTL, then all of

!φ, φ && ψ, φ || ψ, φ −> ψ, φ <−> ψ
[]φ, <>φ, φ Uψ

are ∈ ForBTL

SEFM: Model Checking with Temporal Logic /GU 150922 11 / 32

Semantics of Boolean Temporal Logic

A run σ through a Promela model M is a chain of states

L0, I0 L1, I1 L2, I2 L3, I3 L4, I4 · · ·

I Lj maps each running process to its current location counter

I From Lj to Lj+1, only one of the location counters has advanced
(exception: channel rendezvous)

I Ij maps each variable in M to its current value

Arithmetic and relational expressions are interpreted in states as
expected; e.g. Lj , Ij |= x<y iff Ij(x) < Ij(y)

Lj , Ij |= P@l iff Lj(P) is the location labeled with l

Evaluating other formulas ∈ ForBTL in runs σ: see previous lecture
SEFM: Model Checking with Temporal Logic /GU 150922 12 / 32

Safety Properties

Safety Properties

. . . are formulas of the form []φ

I state that something ‘good’, φ, is guaranteed throughout each run

I accordingly: []¬ψ states that something ‘bad’, ψ, never happens

Example

TL formula [](critical <= 1)

“it is guaranteed throughout each run that at most one process visits its
critical section at any time”

or, equivalently:
“it will never happen that more than one process visits its critical section”

SEFM: Model Checking with Temporal Logic /GU 150922 13 / 32

Applying Temporal Logic to Critical Section Problem

We want to verify [](critical<=1) as a correctness property of:

active proctype P() {

do :: /* non -critical activity */

atomic {

!inCriticalQ;

inCriticalP = true
}

critical ++;

/* critical activity */

critical --;

inCriticalP = f a l s e
od

}

/* similarly for process Q */

SEFM: Model Checking with Temporal Logic /GU 150922 14 / 32

Model Checking a Safety Property using jSpin

1. add definition of TL formula to Promela file

Example ltl atMostOne { [](critical <= 1) }
General ltl name { TL-formula }

can define more than one formula

2. load Promela file in jSpin

3. ensure Safety is selected

4. select Verify
I jSpin always selects first formula
I use command line ./pan -N name to select arbitrary formulas

5. (if necessary) select Stop to terminate too long verification

Demo: safety1.pml

ltl definitions not part of Ben Ari’s book (Spin≤ 6): ignore 5.3.2, etc.

SEFM: Model Checking with Temporal Logic /GU 150922 15 / 32

Never Claims: Processes trying to show user wrong

Büchi automaton, as Promela process, for negated property

1. Negated TL formula translated to ‘never’ process

2. accepting locations in Büchi automaton represented with help of
accept labels (“acceptxxx:”)

3. If one of these reached infinitely often, the orig. property is violated

Example (Never claim for <>p, simplified for readability)

never { /* !(<>p) */

accept_xyz: /* passed ∞ often iff !(<>p) holds */

do
:: (!p)

od
}

SEFM: Model Checking with Temporal Logic /GU 150922 16 / 32

Model Checking against Temporal Logic Property

Theory behind Spin

1. Represent the interleaving of all processes as a single automaton
(only one process advances in each step), called M

2. Construct Büchi automaton (never claim) NC¬φ for negation of TL
formula φ to be verified

3. If
Lω(M) ∩ Lω(NC¬φ) = ∅

then φ holds in M,
otherwise we have a counterexample

4. To check Lω(M) ∩ Lω(NC¬φ) construct intersection automaton
(both automata advance in each step) and search for accepting run

SEFM: Model Checking with Temporal Logic /GU 150922 17 / 32

Model Checking a Safety Property
using Web Interface

1. add definition of TL formula to Promela file

Example ltl atMostOne { [](critical <= 1) }
General ltl name { TL-formula }

can define more than one formula

2. load Promela file into web interface

3. ensure Safety is selected

4. enter name of LTL formula in according field

5. select Verify

Demo: safety1.pml

SEFM: Model Checking with Temporal Logic /GU 150922 18 / 32

Model Checking a Safety Property
using Spin directly

Command Line Execution (Alt. 1)

Make sure ltl name { TL-formula } is in file.pml

> spin -a file .pml

> gcc -DSAFETY -o pan pan.c

> ./pan -N name

Demo: target/safety1.pml

I The ‘ltl <name> { <TL formula> }’ construct must be part of
your lab submission!

SEFM: Model Checking with Temporal Logic /GU 150922 19 / 32

Model Checking a Safety Property
using Spin directly

Command Line Execution (Alt. 2)

Write negated TL formula in file formulafile.PRP (first line)

> spin -a -F formulafile .PRP file .pml

> gcc -DSAFETY -o pan pan.c

> ./pan

I some platforms have problems with -F

SEFM: Model Checking with Temporal Logic /GU 150922 20 / 32

Liveness Properties

Liveness Properties

. . . formulas of the form <>φ

I state that something good (φ) eventually happens in each run

Example

<>csp

(with csp a variable only true in the critical section of P)

“in each run, process P visits its critical section eventually”

SEFM: Model Checking with Temporal Logic /GU 150922 21 / 32

Applying Temporal Logic to Starvation Problem

We want to verify <>csp as a correctness property of:

active proctype P() {

do :: /* non -critical activity */

atomic {

!inCriticalQ;

inCriticalP = true
}

csp = true;
/* critical activity */

csp = f a l s e ;

inCriticalP = f a l s e
od

}

/* similarly for process Q */

/* there , using csq */

SEFM: Model Checking with Temporal Logic /GU 150922 22 / 32

Model Checking a Liveness Property using jSpin

1. open Promela file liveness1.pml

2. write ltl pWillEnterC { <>csp } in Promela file
(as first ltl formula)

3. ensure that Acceptance is selected
(Spin will search for accepting cycles through the never claim)

4. for the moment uncheck Weak Fairness (see discussion below)

5. select Verify

SEFM: Model Checking with Temporal Logic /GU 150922 23 / 32

Verification Fails

Demo: start/liveness1.pml

Verification fails!

Why?

The liveness property on one process “had no chance”.
Not even weak fairness was switched on!

SEFM: Model Checking with Temporal Logic /GU 150922 24 / 32

Model Checking Liveness with Weak Fairness
using jSpin

Always check Weak fairness when verifying liveness

1. open Promela file

2. write ltl pWillEnterC { <>csp } in Promela file
(as first ltl formula)

3. ensure that Acceptance is selected
(Spin will search for accepting cycles through the never claim)

4. ensure Weak fairness is checked

5. select Verify

SEFM: Model Checking with Temporal Logic /GU 150922 25 / 32

Model Checking Liveness
using Web Interface

1. add definition of TL formula to Promela file

Example ltl pWillEnterC { <>csp }
General ltl name { TL-formula }

can define more than one formula

2. load Promela file into web interface

3. ensure Acceptance is selected

4. enter name of LTL formula in according field

5. ensure Weak fairness is checked

6. select Verify

Demo: liveness1.pml

SEFM: Model Checking with Temporal Logic /GU 150922 26 / 32

Model Checking Liveness
using Spin directly

Command Line Execution (Alt. 1)

Make sure ltl name { TL-formula } is in file.pml

> spin -a file .pml

> gcc -o pan pan.c

> ./pan -a -f [-N name]

-a acceptance cycles, -f weak fairness

Demo: start/liveness1.pml

SEFM: Model Checking with Temporal Logic /GU 150922 27 / 32

Model Checking Liveness
using Spin directly

Command Line Execution (Alt. 2)

Write negated TL formula in file formulafile.PRP (first line)

> spin -a -F formulafile .PRP file .pml

> gcc -o pan pan.c

> ./pan -a -f

-a acceptance cycles, -f weak fairness

SEFM: Model Checking with Temporal Logic /GU 150922 28 / 32

Limitation of Weak Fairness

Verification fails again!

Why?

Weak fairness is too weak . . .

Definition (Weak Fairness)

A run is called weakly fair iff the following holds:
each continuously executable statement is executed eventually.

Note that !inCriticalQ is not continuously executable!

Restriction to weak fairness is principal limitation of Spin

The only way to show liveness of our example is to rewrite the model

SEFM: Model Checking with Temporal Logic /GU 150922 29 / 32

Temporal Model Checking without Ghost Variables

We want to verify mutual exclusion without using ghost variables

bool inCriticalP = fa l se , inCriticalQ = f a l s e ;

active proctype P() {

do :: atomic {

!inCriticalQ;

inCriticalP = true
}

cs: /* critical activity */

inCriticalP = f a l s e
od

}

/* similar for process Q with same label cs: */

ltl mutualExcl { []!(P@cs && Q@cs) }

Demo: start/noGhost.pml

SEFM: Model Checking with Temporal Logic /GU 150922 30 / 32

Liveness Revisited

Label expressions often remove the need for ghost variables

I Specify liveness of fair.pml using labels

I Prove termination

I Weak fairness is needed, and sufficient

Demo: target/fair.pml

SEFM: Model Checking with Temporal Logic /GU 150922 31 / 32

Literature for this Lecture

Ben-Ari Chapter 5
except Sections 5.3.2, 5.3.3, 5.4.2
(ltl replaces #define and -f option of Spin)

SEFM: Model Checking with Temporal Logic /GU 150922 32 / 32

	Model Checking with Spin
	Preliminaries
	Verification of Temporal Properties
	Boolean Temporal Logic
	Safety Properties
	Model Checking Safety
	Liveness Properties
	Using Weak Fairness
	Without Ghost Variables
	Literature

