
Software Engineering using Formal Methods
Java Modeling Language

Wolfgang Ahrendt

29 September 2015

SEFM: Java Modeling Language /GU 150929 1 / 58

Role of JML in the Course

programming/modelling property/specification verification
language language technique

Promela LTL model checking

JAVA JML deductive verification

SEFM: Java Modeling Language /GU 150929 2 / 58

Unit Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification – contracts among implementers on various levels:

I application level – application level

I application level – library level

I library level – library level

SEFM: Java Modeling Language /GU 150929 3 / 58

Unit Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification – contracts among implementers on various levels:

I application level – application level

I application level – library level

I library level – library level

SEFM: Java Modeling Language /GU 150929 3 / 58

Unit Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification – contracts among implementers on various levels:

I application level – application level

I application level – library level

I library level – library level

SEFM: Java Modeling Language /GU 150929 3 / 58

Unit Specifications

In the object-oriented setting:

units to be specified are interfaces, classes, and their methods

We start with method specifications.

Method specifications potentially refer to:

I initial values of formal parameters,

I result value,

I visible part of pre/post-state

SEFM: Java Modeling Language /GU 150929 4 / 58

Unit Specifications

In the object-oriented setting:

units to be specified are interfaces, classes, and their methods

We start with method specifications.

Method specifications potentially refer to:

I initial values of formal parameters,

I result value,

I visible part of pre/post-state

SEFM: Java Modeling Language /GU 150929 4 / 58

Unit Specifications

In the object-oriented setting:

units to be specified are interfaces, classes, and their methods

We start with method specifications.

Method specifications potentially refer to:

I initial values of formal parameters,

I result value,

I visible part of pre/post-state

SEFM: Java Modeling Language /GU 150929 4 / 58

Unit Specifications

In the object-oriented setting:

units to be specified are interfaces, classes, and their methods

We start with method specifications.

Method specifications potentially refer to:

I initial values of formal parameters,

I result value,

I visible part of pre/post-state

SEFM: Java Modeling Language /GU 150929 4 / 58

Unit Specifications

In the object-oriented setting:

units to be specified are interfaces, classes, and their methods

We start with method specifications.

Method specifications potentially refer to:

I initial values of formal parameters,

I result value,

I pre-state and post-state

visible part of pre/post-state

SEFM: Java Modeling Language /GU 150929 4 / 58

Unit Specifications

In the object-oriented setting:

units to be specified are interfaces, classes, and their methods

We start with method specifications.

Method specifications potentially refer to:

I initial values of formal parameters,

I result value,

I visible part of pre/post-state

SEFM: Java Modeling Language /GU 150929 4 / 58

Specifications as Contracts

to stress the different roles – obligations – responsibilities in a
specification:

widely used analogy of the specification as a contract

“Design by Contract” methodology (Meyer, 1992, Eiffel)

Contract between caller and callee (called method)

callee guarantees certain outcome provided caller guarantees prerequisites

SEFM: Java Modeling Language /GU 150929 5 / 58

Specifications as Contracts

to stress the different roles – obligations – responsibilities in a
specification:

widely used analogy of the specification as a contract

“Design by Contract” methodology (Meyer, 1992, Eiffel)

Contract between caller and callee (called method)

callee guarantees certain outcome provided caller guarantees prerequisites

SEFM: Java Modeling Language /GU 150929 5 / 58

Running Example: ATM.java

public class ATM {

// fields:

private BankCard insertedCard = null;

private int wrongPINCounter = 0;

private boolean customerAuthenticated = false;

// methods:

public void insertCard (BankCard card) { ... }

public void enterPIN (int pin) { ... }

public int accountBalance () { ... }

public int withdraw (int amount) { ... }

public void ejectCard () { ... }

}

SEFM: Java Modeling Language /GU 150929 6 / 58

Informal Specification

very informal Specification of ‘enterPIN (int pin)’:

Enter the PIN that belongs to the currently inserted bank card
into the ATM. If a wrong PIN is entered three times in a row,
the card is confiscated. After having entered the correct PIN,
the customer is regarded as authenticated.

SEFM: Java Modeling Language /GU 150929 7 / 58

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 150929 8 / 58

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 150929 8 / 58

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 150929 8 / 58

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 150929 8 / 58

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 150929 8 / 58

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 150929 8 / 58

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 150929 8 / 58

Meaning of Pre/Post-condition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition
then in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. In case of termination, it may be normal or abrupt.

non-termination and abrupt termination ⇒ next lecture

SEFM: Java Modeling Language /GU 150929 9 / 58

Meaning of Pre/Post-condition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition
then in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. In case of termination, it may be normal or abrupt.

non-termination and abrupt termination ⇒ next lecture

SEFM: Java Modeling Language /GU 150929 9 / 58

Meaning of Pre/Post-condition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition
then in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. In case of termination, it may be normal or abrupt.

non-termination and abrupt termination ⇒ next lecture

SEFM: Java Modeling Language /GU 150929 9 / 58

Formal Specification

Natural language specs are very important and widely used

, we focus on

Formal Specification

Describe contracts with mathematical rigour

Motivation

I High degree of precision
I formalization often exhibits omissions/inconsistencies
I avoid ambiguities inherent to natural language

I Potential for automation of program analysis
I monitoring
I test case generation
I program verification

SEFM: Java Modeling Language /GU 150929 10 / 58

Formal Specification

Natural language specs are very important and widely used, we focus on

Formal Specification

Describe contracts with mathematical rigour

Motivation

I High degree of precision
I formalization often exhibits omissions/inconsistencies
I avoid ambiguities inherent to natural language

I Potential for automation of program analysis
I monitoring
I test case generation
I program verification

SEFM: Java Modeling Language /GU 150929 10 / 58

Formal Specification

Natural language specs are very important and widely used, we focus on

Formal Specification

Describe contracts with mathematical rigour

Motivation

I High degree of precision
I formalization often exhibits omissions/inconsistencies
I avoid ambiguities inherent to natural language

I Potential for automation of program analysis
I monitoring
I test case generation
I program verification

SEFM: Java Modeling Language /GU 150929 10 / 58

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA + FO Logic + pre/post-conditions, invariants + more. . .

SEFM: Java Modeling Language /GU 150929 11 / 58

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA

+ FO Logic + pre/post-conditions, invariants + more. . .

SEFM: Java Modeling Language /GU 150929 11 / 58

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA + FO Logic

+ pre/post-conditions, invariants + more. . .

SEFM: Java Modeling Language /GU 150929 11 / 58

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA + FO Logic + pre/post-conditions, invariants

+ more. . .

SEFM: Java Modeling Language /GU 150929 11 / 58

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA + FO Logic + pre/post-conditions, invariants + more. . .

SEFM: Java Modeling Language /GU 150929 11 / 58

JML Annotations

JML extends JAVA by annotations.

JML annotations include:

4 preconditions

4 postconditions

4 class invariants

4 additional modifiers

8 ‘specification-only’ fields

8 ‘specification-only’ methods

4 loop invariants

4 ...

8 ...

4: in this course, 8: not in this course

SEFM: Java Modeling Language /GU 150929 12 / 58

JML/JAVA integration

JML annotations are attached to JAVA programs
by

writing them directly into the JAVA source code files

Ensures compatibility with standard JAVA compiler:

JML annotations live in special JAVA comments,
ignored by JAVA compiler, recognized by JML tools

SEFM: Java Modeling Language /GU 150929 13 / 58

JML by Example

from the file ATM.java

...

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

...

Everything between /* and */ is invisible for JAVA.

SEFM: Java Modeling Language /GU 150929 14 / 58

JML by Example

from the file ATM.java

...

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

...

Everything between /* and */ is invisible for JAVA.

SEFM: Java Modeling Language /GU 150929 14 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A JAVA comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in JAVA comments starting with @.

How about “//”comments?

SEFM: Java Modeling Language /GU 150929 15 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A JAVA comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in JAVA comments starting with @.

How about “//”comments?

SEFM: Java Modeling Language /GU 150929 15 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A JAVA comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in JAVA comments starting with @.

How about “//”comments?

SEFM: Java Modeling Language /GU 150929 15 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A JAVA comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in JAVA comments starting with @.

How about “//”comments?

SEFM: Java Modeling Language /GU 150929 15 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated; @*/

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

The easiest way to comment out JML:

/* @ public normal_behavior ... @*/

// @ public normal_behavior

// @ requires !customerAuthenticated;

...

SEFM: Java Modeling Language /GU 150929 16 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated; @*/

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

The easiest way to comment out JML:

/* @ public normal_behavior ... @*/

// @ public normal_behavior

// @ requires !customerAuthenticated;

...

SEFM: Java Modeling Language /GU 150929 16 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated; @*/

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

The easiest way to comment out JML:

/* @ public normal_behavior ... @*/

// @ public normal_behavior

// @ requires !customerAuthenticated;

...

SEFM: Java Modeling Language /GU 150929 16 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated; @*/

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

The easiest way to comment out JML:

/* @ public normal_behavior ... @*/

// @ public normal_behavior

// @ requires !customerAuthenticated;

...

SEFM: Java Modeling Language /GU 150929 16 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

SEFM: Java Modeling Language /GU 150929 17 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

SEFM: Java Modeling Language /GU 150929 17 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

SEFM: Java Modeling Language /GU 150929 17 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution later in the lecture.

SEFM: Java Modeling Language /GU 150929 18 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution later in the lecture.

SEFM: Java Modeling Language /GU 150929 18 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception

(on the top level),
if the caller guarantees all preconditions of this specification case.

SEFM: Java Modeling Language /GU 150929 19 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception (on the top level),

if the caller guarantees all preconditions of this specification case.

SEFM: Java Modeling Language /GU 150929 19 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception (on the top level),
if the caller guarantees all preconditions of this specification case.

SEFM: Java Modeling Language /GU 150929 19 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean JAVA expressions

in general:
preconditions are boolean JML expressions (see below)

SEFM: Java Modeling Language /GU 150929 20 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean JAVA expressions

in general:
preconditions are boolean JML expressions (see below)

SEFM: Java Modeling Language /GU 150929 20 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean JAVA expressions

in general:
preconditions are boolean JML expressions (see below)

SEFM: Java Modeling Language /GU 150929 20 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

specifies only the case where both preconditions are true in pre-state

the above is equivalent to:

/*@ public normal_behavior

@ requires (!customerAuthenticated

@ && pin == insertedCard.correctPIN);

@ ensures customerAuthenticated;

@*/

SEFM: Java Modeling Language /GU 150929 21 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean JAVA expressions

in general:
postconditions are boolean JML expressions (see below)

SEFM: Java Modeling Language /GU 150929 22 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean JAVA expressions

in general:
postconditions are boolean JML expressions (see below)

SEFM: Java Modeling Language /GU 150929 22 / 58

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean JAVA expressions

in general:
postconditions are boolean JML expressions (see below)

SEFM: Java Modeling Language /GU 150929 22 / 58

JML by Example

different specification cases are connected by ‘also’.

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@

@ also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) {

if (...
SEFM: Java Modeling Language /GU 150929 23 / 58

JML by Example

/*@ <spec-case1> also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) { ...

for the first time, JML expression not a JAVA expression

\old(E) means: E evaluated in the pre-state of enterPIN.

E can be any (arbitrarily complex) JML expression.

SEFM: Java Modeling Language /GU 150929 24 / 58

JML by Example

/*@ <spec-case1> also <spec-case2> also

@

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@*/

public void enterPIN (int pin) { ...

two postconditions state that:

‘Given the above preconditions, enterPIN guarantees:

insertedCard == null and \old(insertedCard).invalid’

SEFM: Java Modeling Language /GU 150929 25 / 58

JML by Example

Question:

could it be

@ ensures \old(insertedCard.invalid);

instead of

@ ensures \old(insertedCard).invalid;

??

SEFM: Java Modeling Language /GU 150929 26 / 58

Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

what does spec-case-1 not tell about post-state?

recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

what happens with insertCard and wrongPINCounter?

SEFM: Java Modeling Language /GU 150929 27 / 58

Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

what does spec-case-1 not tell about post-state?

recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

what happens with insertCard and wrongPINCounter?

SEFM: Java Modeling Language /GU 150929 27 / 58

Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

what does spec-case-1 not tell about post-state?

recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

what happens with insertCard and wrongPINCounter?

SEFM: Java Modeling Language /GU 150929 27 / 58

Completing Specification Cases

completing spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@ ensures insertedCard == \old(insertedCard);

@ ensures wrongPINCounter == \old(wrongPINCounter);

SEFM: Java Modeling Language /GU 150929 28 / 58

Completing Specification Cases

completing spec-case-2:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@ ensures insertedCard == \old(insertedCard);

@ ensures customerAuthenticated

@ == \old(customerAuthenticated);

SEFM: Java Modeling Language /GU 150929 29 / 58

Completing Specification Cases

completing spec-case-3:

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@ ensures customerAuthenticated

@ == \old(customerAuthenticated);

@ ensures wrongPINCounter == \old(wrongPINCounter);

SEFM: Java Modeling Language /GU 150929 30 / 58

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

SEFM: Java Modeling Language /GU 150929 31 / 58

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

SEFM: Java Modeling Language /GU 150929 31 / 58

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

SEFM: Java Modeling Language /GU 150929 31 / 58

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

SEFM: Java Modeling Language /GU 150929 31 / 58

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

SEFM: Java Modeling Language /GU 150929 31 / 58

Specification Cases with Assignable

completing spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@ assignable customerAuthenticated;

SEFM: Java Modeling Language /GU 150929 32 / 58

Specification Cases with Assignable

completing spec-case-2:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@ assignable wrongPINCounter;

SEFM: Java Modeling Language /GU 150929 33 / 58

Specification Cases with Assignable

completing spec-case-3:

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@ assignable insertedCard,

@ insertedCard.invalid,

SEFM: Java Modeling Language /GU 150929 34 / 58

Assignable Groups

You can specify groups of locations as assignable, using ‘*’.

example:

@ assignable o.*, a[*];

makes all fields of object o and all positions of array a assignable.

SEFM: Java Modeling Language /GU 150929 35 / 58

JML Modifiers

JML extends the JAVA modifiers by additional modifiers

The most important ones are:

I spec_public

I pure

I nullable (next lecture)

I non_null (next lecture)

I helper (next lecture)

SEFM: Java Modeling Language /GU 150929 36 / 58

JML Modifiers: spec_public

in enterPIN example, pre/post-conditions made heavy use of class fields

But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public

I Keep visibility of JAVA fields private/protected

I If necessary make them visible in specification only by spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(different solution: use specification-only fields; not covered in this course)

SEFM: Java Modeling Language /GU 150929 37 / 58

JML Modifiers: spec_public

in enterPIN example, pre/post-conditions made heavy use of class fields

But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public

I Keep visibility of JAVA fields private/protected

I If necessary make them visible in specification only by spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(different solution: use specification-only fields; not covered in this course)

SEFM: Java Modeling Language /GU 150929 37 / 58

JML Modifiers: spec_public

in enterPIN example, pre/post-conditions made heavy use of class fields

But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public

I Keep visibility of JAVA fields private/protected

I If necessary make them visible in specification only by spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(different solution: use specification-only fields; not covered in this course)

SEFM: Java Modeling Language /GU 150929 37 / 58

JML Modifiers: spec_public

in enterPIN example, pre/post-conditions made heavy use of class fields

But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public

I Keep visibility of JAVA fields private/protected

I If necessary make them visible in specification only by spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(different solution: use specification-only fields; not covered in this course)

SEFM: Java Modeling Language /GU 150929 37 / 58

JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
o1.equals(o2) li.contains(elem) li1.max() < li2.min()

But: specifications may not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it has no visible side effects on existing objects and
always terminates.
A method is strictly pure if it is pure and does not create new objects.

JML expressions may call (strictly) pure methods.

Pure methods are annotated by pure or strictly_pure resp.

public /*@ pure @*/ int max() { ... }

SEFM: Java Modeling Language /GU 150929 38 / 58

JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
o1.equals(o2) li.contains(elem) li1.max() < li2.min()

But: specifications may not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it has no visible side effects on existing objects and
always terminates.
A method is strictly pure if it is pure and does not create new objects.

JML expressions may call (strictly) pure methods.

Pure methods are annotated by pure or strictly_pure resp.

public /*@ pure @*/ int max() { ... }

SEFM: Java Modeling Language /GU 150929 38 / 58

JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
o1.equals(o2) li.contains(elem) li1.max() < li2.min()

But: specifications may not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it has no visible side effects on existing objects and
always terminates.
A method is strictly pure if it is pure and does not create new objects.

JML expressions may call (strictly) pure methods.

Pure methods are annotated by pure or strictly_pure resp.

public /*@ pure @*/ int max() { ... }

SEFM: Java Modeling Language /GU 150929 38 / 58

JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
o1.equals(o2) li.contains(elem) li1.max() < li2.min()

But: specifications may not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it has no visible side effects on existing objects and
always terminates.
A method is strictly pure if it is pure and does not create new objects.

JML expressions may call (strictly) pure methods.

Pure methods are annotated by pure or strictly_pure resp.

public /*@ pure @*/ int max() { ... }

SEFM: Java Modeling Language /GU 150929 38 / 58

JML Modifiers: Purity Cont’d

I pure puts obligation on implementor not to cause side effects

I It is possible to formally verify that a method is pure

I pure implies assignable \nothing;

(may create new objects)

I assignable \strictly_nothing;

expresses that no new objects are created

I Assignable clauses are local to a specification case

I pure is global to the method

SEFM: Java Modeling Language /GU 150929 39 / 58

JML Expressions 6= JAVA Expressions

boolean JML Expressions (to be completed)

I each side-effect free boolean JAVA expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)

I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I ...
I ...
I ...
I ...

SEFM: Java Modeling Language /GU 150929 40 / 58

JML Expressions 6= JAVA Expressions

boolean JML Expressions (to be completed)

I each side-effect free boolean JAVA expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I ...
I ...
I ...
I ...

SEFM: Java Modeling Language /GU 150929 40 / 58

Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array allAccounts are stored at the
index corresponding to their respective accountNumber field

I all instances of class BankCard have different cardNumbers

SEFM: Java Modeling Language /GU 150929 41 / 58

Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array allAccounts are stored at the
index corresponding to their respective accountNumber field

I all instances of class BankCard have different cardNumbers

SEFM: Java Modeling Language /GU 150929 41 / 58

Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array allAccounts are stored at the
index corresponding to their respective accountNumber field

I all instances of class BankCard have different cardNumbers

SEFM: Java Modeling Language /GU 150929 41 / 58

Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array allAccounts are stored at the
index corresponding to their respective accountNumber field

I all instances of class BankCard have different cardNumbers

SEFM: Java Modeling Language /GU 150929 41 / 58

First-order Logic in JML Expressions

JML boolean expressions extend JAVA boolean expressions by:

I implication

I equivalence

I quantification

SEFM: Java Modeling Language /GU 150929 42 / 58

First-order Logic in JML Expressions

JML boolean expressions extend JAVA boolean expressions by:

I implication

I equivalence

I quantification

SEFM: Java Modeling Language /GU 150929 42 / 58

boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

I each side-effect free boolean JAVA expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I (\forall t x; a) (“for all x of type t, a holds”)
I (\exists t x; a) (“there exists x of type t such that a”)

I (\forall t x; a; b) (“for all x of type t fulfilling a, b holds”)
I (\exists t x; a; b) (“there exists an x of type t fulfilling a,

such that b”)

SEFM: Java Modeling Language /GU 150929 43 / 58

boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

I each side-effect free boolean JAVA expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I (\forall t x; a) (“for all x of type t, a holds”)
I (\exists t x; a) (“there exists x of type t such that a”)
I (\forall t x; a; b) (“for all x of type t fulfilling a, b holds”)
I (\exists t x; a; b) (“there exists an x of type t fulfilling a,

such that b”)

SEFM: Java Modeling Language /GU 150929 43 / 58

JML Quantifiers

in

(\forall t x; a; b)

(\exists t x; a; b)

a is called “range predicate”

those forms are redundant:

(\forall t x; a; b)

equivalent to
(\forall t x; a ==> b)

(\exists t x; a; b)

equivalent to
(\exists t x; a && b)

SEFM: Java Modeling Language /GU 150929 44 / 58

JML Quantifiers

in

(\forall t x; a; b)

(\exists t x; a; b)

a is called “range predicate”

those forms are redundant:

(\forall t x; a; b)

equivalent to
(\forall t x; a ==> b)

(\exists t x; a; b)

equivalent to
(\exists t x; a && b)

SEFM: Java Modeling Language /GU 150929 44 / 58

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a is used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

SEFM: Java Modeling Language /GU 150929 45 / 58

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a is used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

SEFM: Java Modeling Language /GU 150929 45 / 58

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a is used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j;

0<=i && i<j && j<10; arr[i] <= arr[j])

SEFM: Java Modeling Language /GU 150929 45 / 58

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a is used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10;

arr[i] <= arr[j])

SEFM: Java Modeling Language /GU 150929 45 / 58

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a is used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

SEFM: Java Modeling Language /GU 150929 45 / 58

Using Quantified JML expressions

How to express:

I an array arr only holds values ≤ 2

(\forall int i; 0 <= i && i < arr.length; arr[i] <= 2)

SEFM: Java Modeling Language /GU 150929 46 / 58

Using Quantified JML expressions

How to express:

I an array arr only holds values ≤ 2

(\forall int i;

0 <= i && i < arr.length; arr[i] <= 2)

SEFM: Java Modeling Language /GU 150929 46 / 58

Using Quantified JML expressions

How to express:

I an array arr only holds values ≤ 2

(\forall int i; 0 <= i && i < arr.length;

arr[i] <= 2)

SEFM: Java Modeling Language /GU 150929 46 / 58

Using Quantified JML expressions

How to express:

I an array arr only holds values ≤ 2

(\forall int i; 0 <= i && i < arr.length; arr[i] <= 2)

SEFM: Java Modeling Language /GU 150929 46 / 58

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

is this enough?
arr.length > 0 ==>

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

SEFM: Java Modeling Language /GU 150929 47 / 58

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

is this enough?

arr.length > 0 ==>

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

SEFM: Java Modeling Language /GU 150929 47 / 58

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

is this enough?

arr.length > 0 ==>

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

SEFM: Java Modeling Language /GU 150929 47 / 58

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

is this enough?
arr.length > 0 ==>

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

SEFM: Java Modeling Language /GU 150929 47 / 58

Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

is this enough?

arr.length > 0 ==>

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

SEFM: Java Modeling Language /GU 150929 47 / 58

Using Quantified JML expressions

How to express:

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

(\forall int i; 0 <= i && i < maxAccountNumber;

accountProxies[i].accountNumber == i)

SEFM: Java Modeling Language /GU 150929 48 / 58

Using Quantified JML expressions

How to express:

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

(\forall int i; 0 <= i && i < maxAccountNumber;

accountProxies[i].accountNumber == i)

SEFM: Java Modeling Language /GU 150929 48 / 58

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;

p1 != p2 ==> p1.cardNumber != p2.cardNumber)

SEFM: Java Modeling Language /GU 150929 49 / 58

Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;

p1 != p2 ==> p1.cardNumber != p2.cardNumber)

SEFM: Java Modeling Language /GU 150929 49 / 58

Generalized Quantifiers

JML offers also generalized quantifiers:

I \max

I \min

I \product

I \sum

returning the maximum, minimum, product, or sum of the values of the
expressions given, where the variables satisfy the given range.

Examples (all these expressions are true):

(\sum int i; 0 <= i && i < 5; i) == 0 + 1 + 2 + 3 + 4

(\product int i; 0 < i && i < 5; i+2) == 3 * 4 * 5 * 6

(\max int i; 0 <= i && i < 5; i) == 4

(\min int i; 0 <= i && i < 5; i-1) == -1

SEFM: Java Modeling Language /GU 150929 50 / 58

Generalized Quantifiers

JML offers also generalized quantifiers:

I \max

I \min

I \product

I \sum

returning the maximum, minimum, product, or sum of the values of the
expressions given, where the variables satisfy the given range.

Examples (all these expressions are true):

(\sum int i; 0 <= i && i < 5; i) == 0 + 1 + 2 + 3 + 4

(\product int i; 0 < i && i < 5; i+2) == 3 * 4 * 5 * 6

(\max int i; 0 <= i && i < 5; i) == 4

(\min int i; 0 <= i && i < 5; i-1) == -1

SEFM: Java Modeling Language /GU 150929 50 / 58

Generalized Quantifiers

JML offers also generalized quantifiers:

I \max

I \min

I \product

I \sum

returning the maximum, minimum, product, or sum of the values of the
expressions given, where the variables satisfy the given range.

Examples (all these expressions are true):

(\sum int i; 0 <= i && i < 5; i) == 0 + 1 + 2 + 3 + 4

(\product int i; 0 < i && i < 5; i+2) == 3 * 4 * 5 * 6

(\max int i; 0 <= i && i < 5; i) == 4

(\min int i; 0 <= i && i < 5; i-1) == -1

SEFM: Java Modeling Language /GU 150929 50 / 58

Generalized Quantifiers

JML offers also generalized quantifiers:

I \max

I \min

I \product

I \sum

returning the maximum, minimum, product, or sum of the values of the
expressions given, where the variables satisfy the given range.

Examples (all these expressions are true):

(\sum int i; 0 <= i && i < 5; i) == 0 + 1 + 2 + 3 + 4

(\product int i; 0 < i && i < 5; i+2) == 3 * 4 * 5 * 6

(\max int i; 0 <= i && i < 5; i) == 4

(\min int i; 0 <= i && i < 5; i-1) == -1

SEFM: Java Modeling Language /GU 150929 50 / 58

Example: Specifying LimitedIntegerSet

public class LimitedIntegerSet {

public final int limit;

private int arr[];

private int size = 0;

public LimitedIntegerSet(int limit) {

this.limit = limit;

this.arr = new int[limit];

}

public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public boolean contains(int elem) {/*...*/}

// other methods

}
SEFM: Java Modeling Language /GU 150929 51 / 58

Prerequisites: Adding Specification Modifiers

public class LimitedIntegerSet {

public final int limit;

private /*@ spec_public @*/ int arr[];

private /*@ spec_public @*/ int size = 0;

public LimitedIntegerSet(int limit) {

this.limit = limit;

this.arr = new int[limit];

}

public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

// other methods

}
SEFM: Java Modeling Language /GU 150929 52 / 58

Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

has no effect on the state, incl. no exceptions

how to specify result value?

SEFM: Java Modeling Language /GU 150929 53 / 58

Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

has no effect on the state, incl. no exceptions

how to specify result value?

SEFM: Java Modeling Language /GU 150929 53 / 58

Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

has no effect on the state, incl. no exceptions

how to specify result value?

SEFM: Java Modeling Language /GU 150929 53 / 58

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result ==

(\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 150929 54 / 58

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;

@

0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 150929 54 / 58

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@

arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 150929 54 / 58

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 150929 54 / 58

Specifying add() (spec-case1) – new element can be added

/*@ public normal_behavior

@ requires size < limit && !contains(elem);

@ ensures \result == true;

@ ensures contains(elem);

@ ensures (\forall int e;

@ e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size) + 1;

@

@ also

@

@ <spec-case2>

@*/

public boolean add(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 150929 55 / 58

Specifying add() (spec-case2) – new element cannot be added

/*@ public normal_behavior

@

@ <spec-case1>

@

@ also

@

@ public normal_behavior

@ requires (size == limit) || contains(elem);

@ ensures \result == false;

@ ensures (\forall int e;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size);

@*/

public boolean add(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 150929 56 / 58

Specifying remove()

/*@ public normal_behavior

@ ensures !contains(elem);

@ ensures (\forall int e;

@ e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures \old(contains(elem))

@ ==> size == \old(size) - 1;

@ ensures !\old(contains(elem))

@ ==> size == \old(size);

@*/

public void remove(int elem) {/*...*/}

SEFM: Java Modeling Language /GU 150929 57 / 58

Literature for this Lecture

essential reading:

New JML Tutorial M. Huisman, W. Ahrendt, D. Grahl, M. Hentschel:
Formal Specification with the Java Modeling Language.
Chapter in the new KeY book, to appear
(see “JML” on literature/tools page)

further reading, all available at
http://www.eecs.ucf.edu/~leavens/JML/documentation.shtml:

JML Reference Manual Gary T. Leavens, Erik Poll, Curtis Clifton,
Yoonsik Cheon, Clyde Ruby, David Cok, Peter Müller, and
Joseph Kiniry.
JML Reference Manual

JML Tutorial Gary T. Leavens, Yoonsik Cheon.
Design by Contract with JML

JML Overview Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: A Notation for Detailed Design

SEFM: Java Modeling Language /GU 150929 58 / 58

http://www.eecs.ucf.edu/~leavens/JML/documentation.shtml

	Overview
	Unit Specification
	Running Example
	Informal Specification
	JML
	JML by Example
	Assignable Locations
	JML Modifiers
	JML Expressions
	First-Order in Specifications
	Result Values
	Literature

