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Role of JML in the Course

programming/modelling property/specification verification
language language technique

Promela LTL model checking

JAVA JML deductive verification
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Unit Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification – contracts among implementers on various levels:

I application level – application level

I application level – library level

I library level – library level
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Unit Specifications

In the object-oriented setting:

units to be specified are interfaces, classes, and their methods

We start with method specifications.

Method specifications potentially refer to:

I initial values of formal parameters,

I result value,

I visible part of pre/post-state
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Specifications as Contracts

to stress the different roles – obligations – responsibilities in a
specification:

widely used analogy of the specification as a contract

“Design by Contract” methodology (Meyer, 1992, Eiffel)

Contract between caller and callee (called method)

callee guarantees certain outcome provided caller guarantees prerequisites
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Running Example: ATM.java

public class ATM {

// fields:

private BankCard insertedCard = null;

private int wrongPINCounter = 0;

private boolean customerAuthenticated = false;

// methods:

public void insertCard (BankCard card) { ... }

public void enterPIN (int pin) { ... }

public int accountBalance () { ... }

public int withdraw (int amount) { ... }

public void ejectCard () { ... }

}
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Informal Specification

very informal Specification of ‘enterPIN (int pin)’:

Enter the PIN that belongs to the currently inserted bank card
into the ATM. If a wrong PIN is entered three times in a row,
the card is confiscated. After having entered the correct PIN,
the customer is regarded as authenticated.
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Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter has been increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated
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Meaning of Pre/Post-condition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition
then in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. In case of termination, it may be normal or abrupt.

non-termination and abrupt termination ⇒ next lecture
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Formal Specification

Natural language specs are very important and widely used

, we focus on

Formal Specification

Describe contracts with mathematical rigour

Motivation

I High degree of precision
I formalization often exhibits omissions/inconsistencies
I avoid ambiguities inherent to natural language

I Potential for automation of program analysis
I monitoring
I test case generation
I program verification
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Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA + FO Logic + pre/post-conditions, invariants + more. . .
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JML Annotations

JML extends JAVA by annotations.

JML annotations include:

4 preconditions

4 postconditions

4 class invariants

4 additional modifiers

8 ‘specification-only’ fields

8 ‘specification-only’ methods

4 loop invariants

4 ...

8 ...

4: in this course, 8: not in this course
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JML/JAVA integration

JML annotations are attached to JAVA programs
by

writing them directly into the JAVA source code files

Ensures compatibility with standard JAVA compiler:

JML annotations live in special JAVA comments,
ignored by JAVA compiler, recognized by JML tools
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JML by Example

from the file ATM.java

...

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if ( ...

...

Everything between /* and */ is invisible for JAVA.
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JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if ( ...

But:

A JAVA comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in JAVA comments starting with @.

How about “//”comments?
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JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated; @*/

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

The easiest way to comment out JML:

/* @ public normal_behavior ... @*/

// @ public normal_behavior

// @ requires !customerAuthenticated;

...
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JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if ( ...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.
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JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if ( ...

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution later in the lecture.
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JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if ( ...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception

(on the top level),
if the caller guarantees all preconditions of this specification case.
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JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if ( ...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean JAVA expressions

in general:
preconditions are boolean JML expressions (see below)
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JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

specifies only the case where both preconditions are true in pre-state

the above is equivalent to:

/*@ public normal_behavior

@ requires ( !customerAuthenticated

@ && pin == insertedCard.correctPIN );

@ ensures customerAuthenticated;

@*/
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JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if ( ...

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean JAVA expressions

in general:
postconditions are boolean JML expressions (see below)
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JML by Example

different specification cases are connected by ‘also’.

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@

@ also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) {

if ( ...
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JML by Example

/*@ <spec-case1> also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) { ...

for the first time, JML expression not a JAVA expression

\old(E) means: E evaluated in the pre-state of enterPIN.

E can be any (arbitrarily complex) JML expression.
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JML by Example

/*@ <spec-case1> also <spec-case2> also

@

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@*/

public void enterPIN (int pin) { ...

two postconditions state that:

‘Given the above preconditions, enterPIN guarantees:

insertedCard == null and \old(insertedCard).invalid’
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JML by Example

Question:

could it be

@ ensures \old(insertedCard.invalid);

instead of

@ ensures \old(insertedCard).invalid;

??
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Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

what does spec-case-1 not tell about post-state?

recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

what happens with insertCard and wrongPINCounter?
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Completing Specification Cases

completing spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@ ensures insertedCard == \old(insertedCard);

@ ensures wrongPINCounter == \old(wrongPINCounter);
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Completing Specification Cases

completing spec-case-2:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@ ensures insertedCard == \old(insertedCard);

@ ensures customerAuthenticated

@ == \old(customerAuthenticated);
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Completing Specification Cases

completing spec-case-3:

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@ ensures customerAuthenticated

@ == \old(customerAuthenticated);

@ ensures wrongPINCounter == \old(wrongPINCounter);
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Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;
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Specification Cases with Assignable

completing spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@ assignable customerAuthenticated;
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Specification Cases with Assignable

completing spec-case-2:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@ assignable wrongPINCounter;
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Specification Cases with Assignable

completing spec-case-3:

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@ assignable insertedCard,

@ insertedCard.invalid,
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Assignable Groups

You can specify groups of locations as assignable, using ‘*’.

example:

@ assignable o.*, a[*];

makes all fields of object o and all positions of array a assignable.
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JML Modifiers

JML extends the JAVA modifiers by additional modifiers

The most important ones are:

I spec_public

I pure

I nullable (next lecture)

I non_null (next lecture)

I helper (next lecture)
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JML Modifiers: spec_public

in enterPIN example, pre/post-conditions made heavy use of class fields

But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public

I Keep visibility of JAVA fields private/protected

I If necessary make them visible in specification only by spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(different solution: use specification-only fields; not covered in this course)
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JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
o1.equals(o2) li.contains(elem) li1.max() < li2.min()

But: specifications may not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it has no visible side effects on existing objects and
always terminates.
A method is strictly pure if it is pure and does not create new objects.

JML expressions may call (strictly) pure methods.

Pure methods are annotated by pure or strictly_pure resp.

public /*@ pure @*/ int max() { ... }
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JML Modifiers: Purity Cont’d

I pure puts obligation on implementor not to cause side effects

I It is possible to formally verify that a method is pure

I pure implies assignable \nothing;

(may create new objects)

I assignable \strictly_nothing;

expresses that no new objects are created

I Assignable clauses are local to a specification case

I pure is global to the method
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JML Expressions 6= JAVA Expressions

boolean JML Expressions (to be completed)

I each side-effect free boolean JAVA expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)

I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I ...
I ...
I ...
I ...
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Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array allAccounts are stored at the
index corresponding to their respective accountNumber field

I all instances of class BankCard have different cardNumbers
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First-order Logic in JML Expressions

JML boolean expressions extend JAVA boolean expressions by:

I implication

I equivalence

I quantification
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boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

I each side-effect free boolean JAVA expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I (\forall t x; a) (“for all x of type t, a holds”)
I (\exists t x; a) (“there exists x of type t such that a”)

I (\forall t x; a; b) (“for all x of type t fulfilling a, b holds”)
I (\exists t x; a; b) (“there exists an x of type t fulfilling a,

such that b”)

SEFM: Java Modeling Language /GU 150929 43 / 58



boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

I each side-effect free boolean JAVA expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I (\forall t x; a) (“for all x of type t, a holds”)
I (\exists t x; a) (“there exists x of type t such that a”)
I (\forall t x; a; b) (“for all x of type t fulfilling a, b holds”)
I (\exists t x; a; b) (“there exists an x of type t fulfilling a,

such that b”)

SEFM: Java Modeling Language /GU 150929 43 / 58



JML Quantifiers

in

(\forall t x; a; b)

(\exists t x; a; b)

a is called “range predicate”

those forms are redundant:

(\forall t x; a; b)

equivalent to
(\forall t x; a ==> b)

(\exists t x; a; b)

equivalent to
(\exists t x; a && b)
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Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a is used to restrict range of x further than t

example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])
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Using Quantified JML expressions

How to express:

I an array arr only holds values ≤ 2

(\forall int i; 0 <= i && i < arr.length; arr[i] <= 2)
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Using Quantified JML expressions

How to express:
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Using Quantified JML expressions

How to express:

I the variable m holds the maximum entry of array arr

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

is this enough?
arr.length > 0 ==>

(\exists int i; 0 <= i && i < arr.length; m == arr[i])
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Using Quantified JML expressions

How to express:

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

(\forall int i; 0 <= i && i < maxAccountNumber;

accountProxies[i].accountNumber == i )
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Using Quantified JML expressions

How to express:

I all created instances of class BankCard have different cardNumbers

(\forall BankCard p1, p2;

p1 != p2 ==> p1.cardNumber != p2.cardNumber)
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Generalized Quantifiers

JML offers also generalized quantifiers:

I \max

I \min

I \product

I \sum

returning the maximum, minimum, product, or sum of the values of the
expressions given, where the variables satisfy the given range.

Examples (all these expressions are true):

(\sum int i; 0 <= i && i < 5; i) == 0 + 1 + 2 + 3 + 4

(\product int i; 0 < i && i < 5; i+2) == 3 * 4 * 5 * 6

(\max int i; 0 <= i && i < 5; i) == 4

(\min int i; 0 <= i && i < 5; i-1) == -1
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Example: Specifying LimitedIntegerSet

public class LimitedIntegerSet {

public final int limit;

private int arr[];

private int size = 0;

public LimitedIntegerSet(int limit) {

this.limit = limit;

this.arr = new int[limit];

}

public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public boolean contains(int elem) {/*...*/}

// other methods

}
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Prerequisites: Adding Specification Modifiers

public class LimitedIntegerSet {

public final int limit;

private /*@ spec_public @*/ int arr[];

private /*@ spec_public @*/ int size = 0;

public LimitedIntegerSet(int limit) {

this.limit = limit;

this.arr = new int[limit];

}

public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

// other methods

}
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Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

has no effect on the state, incl. no exceptions

how to specify result value?
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Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result ==

(\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}
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Specifying add() (spec-case1) – new element can be added

/*@ public normal_behavior

@ requires size < limit && !contains(elem);

@ ensures \result == true;

@ ensures contains(elem);

@ ensures (\forall int e;

@ e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size) + 1;

@

@ also

@

@ <spec-case2>

@*/

public boolean add(int elem) {/*...*/}
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Specifying add() (spec-case2) – new element cannot be added

/*@ public normal_behavior

@

@ <spec-case1>

@

@ also

@

@ public normal_behavior

@ requires (size == limit) || contains(elem);

@ ensures \result == false;

@ ensures (\forall int e;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size);

@*/

public boolean add(int elem) {/*...*/}
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Specifying remove()

/*@ public normal_behavior

@ ensures !contains(elem);

@ ensures (\forall int e;

@ e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures \old(contains(elem))

@ ==> size == \old(size) - 1;

@ ensures !\old(contains(elem))

@ ==> size == \old(size);

@*/

public void remove(int elem) {/*...*/}
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Literature for this Lecture

essential reading:

New JML Tutorial M. Huisman, W. Ahrendt, D. Grahl, M. Hentschel:
Formal Specification with the Java Modeling Language.
Chapter in the new KeY book, to appear
(see “JML” on literature/tools page)

further reading, all available at
http://www.eecs.ucf.edu/~leavens/JML/documentation.shtml:

JML Reference Manual Gary T. Leavens, Erik Poll, Curtis Clifton,
Yoonsik Cheon, Clyde Ruby, David Cok, Peter Müller, and
Joseph Kiniry.
JML Reference Manual

JML Tutorial Gary T. Leavens, Yoonsik Cheon.
Design by Contract with JML

JML Overview Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: A Notation for Detailed Design
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