
Functions - Lecture 7

Josef Svenningsson Nested functions

A Nested Function

Suppose we extended Javalette with nested functions.

double hypSq(double a, double b) {
double square(double d) {

return d * d;
}
return square(a) + square(b);

}

Another example

To make nested functions useful we would like to have lexical
scoping.
This means that we can use variables in the inner function, defined
in the outer function.

double sqrt(double s) {
double newton(double y) {

return (y + s / y) / 2;
}
double x = 0.0;
int i = 0;
while (i < 10) {

x = newton(x);
i++;

}
return x;

}



Access Links

Access Links is a mechanism to access variables defined in an
enclosing procedure
An access link is an extra field in a stack frame which points to
the closes stack frame of the enclosing procedure

Access Links

Outline of a quicksort implementation

void sort(int[] arr) {
void quicksort(int m,int n) {

v = ..
void partition(int y,int z) {

.. arr .. v ..
}
.. a .. v .. partition .. quicksort

}
.. quicksort ..

}

Example stack

S

Access Link

arr

q(1,9)

Access Link

v

Access Link

v

q(1,3)

p(1,3)

Access Link

When accessing e.g. the variable arr in p we need to go through
the access link to q and then to s.

Manipulating Access Links

When procedure q calls procedure p there are three cases to
consider:

p has higher nesting depth than q.
Then the depth of p must be exactly one larger than q and p’s
access link must point to q.
p and q has the same nesting depth
The access link for p is the same as for q.
p has a lower nesting depth than q.
Let np be the nesting depth of p and nq be the nesting depth of
q. Furthermore, suppose that p is defined immediately within
procedure r. The top activation record for r can be found by
following n_q - n_p + 1 access links down the stack.



Displays

If the nesting depth is very large, then the link chains may be
very long. Traversing these links can be costly.
Displays were developed to speed up access.
A Display is an stack, separate from the call stack, which
maintains pointers to the most recent activation record of the
different nesting depths.
The display grows and shrinks with the maximum nesting depth
of the functions on the call stack.

Displays

S

q(1,9)

v

v

q(1,3)

p(1,3)

saved d[2]

saved d[2]

saved d[3]

d[1]

d[2]

d[3]

Lambda Lifting

Another way of implementing nested functions is by lifting
them to the top level.
Free variables are handled by adding them as parameters to the
lifted function.

Lambda Lifting - example

Original sqrt
double sqrt(double s) {

double newton(double y) {
return (y + s / y) / 2;

}
double x = 0.0;
int i = 0;
while (i < 10) {

x = newton(x);
}
return x;

}



Lambda Lifting - example

Lambda lifted sqrt
double newton(double y, double s) {

return (y + s / y) / 2;
}

double sqrt(double s) {
double x = 0.0;
int i = 0;
while (i < 10) {

x = newton(x,s);
}
return x;

}

Call-by-reference

Consider lambda lifting the function below.
The local function incc modifies its free variable. In order to lift
incc we have to pass the parameter c by reference.

void foo() {
int c = 0;

void incc() {
c++;

}

incc();
incc();

printInt(c);
}

Call-by-reference

Consider lambda lifting the function below.
The local function incc modifies its free variable. In order to lift
incc we have to pass the parameter c by reference.

void incc(int *c) {
(*c)++;

}

void foo() {
int c = 0;

incc(&c);
incc(&c);

printInt(c);
}

Higher Order Functions



Higher Order Fuctions in Javalette

Adding higher order functions to Javalette we need a new form of
types:
Type(Type,..,Type)
Examples:

bool(int,int)
A function which takes two int arguments and returns a bool
void()
A function which takes no arguments and doesn’t return
anything

Higher Order Functions in Javalette

int main() {
int(int) add(int n) {

int h(int m) {
return n + m;

}
return h;

}

int(int) addFive = add(5);
printInt(addFive(15));

}

Higher Order Functions in Javalette

int main() {
int(int) add(int n) { .. }
int(int) addFive = add(5);

int(int) twice(int(int) f) {
int g(int x) {

return f(f(x));
}
return g;

}

int(int) addTen = twice(addFive);
printInt(twice(twice(addTen))(6));

}

Implementing Higher Order Functions

There are several ways implementing Higher Order Functions

Access Links can be adapted to also deal with higher order
functions
Defunctionalization is a method to convert higher order
functions to data structures. Requires whole program
compilation.
Closures are used to represent functions by a heap allocated
record containing a code pointer and the free variables of the
function.
Closures is by far the most common implementation method



Closures

main

add

n code for h

The closure for h inside add contains a pointer to the code for
h and the value for the variable n.
The closure is heap allocated

Closures and mutable variables

What happens with the stack allocated variable counter once we
exit the function makeCounter?

Heap allocate part of the stack frame
Forbid such programs (example: Java)

int() makeCounter(int start) {
int counter = start;
int inc() {

counter++;
return counter;

}
return inc;

}

Closures and mutable variables

Functional languages like Haskell and ML deal with the problem of
closures and mutability as follows:

Everything is immutable by default.
Mutation is introduced by references which always live on the
heap.

makeCounter = do
r <- newIORef 0
let inc = do

n <- readIORef r
writeIORef r (n+1)
return n

return inc

Anonymous nested functions - lambda expressions

An increasingly popular language feature is to have anonymous
nested functions, so called lambda expressions.
Compiling lambda expressions works the same way as nested
functions with names.



A note on terminology

One can often hear the phrase that a language “has closures”.
This is a somewhat unfortunate use of the word.
Closures is an implementation technique for the language feature
higher order functions.

Lazy evaluation

Is it possible to implement if as a function?
We can fake it by using functions which take no arguments
void if(bool c, void() th) {

if (c)
th();

}

Thunks

Call-by-name is a calling convention where the arguments are
not evaluated until needed.
Thunks are used to implement call-by-name. Thunks are
essentially functions which take no arguments. They are
typically implemented as closures.



Lazy evaluation

The difference between call-by-name and lazy evaluation is that
once an argument is evaluated, it is not reevaluated if it is used
twice.
In order to achieve laziness, once the value is computed we
need to remember it. This can be done in two ways:

Overwrite the thunk with an indirection pointing to the value.
Overwrite the thunk with the value directly, if the space
allocated for the thunk is big enough to hold the value.

A Note

Call-by-name and lazy evaluation is very handy as they allow
the programmer to create new control structures.
Be careful with combining them with side-effects. It can yield
very surprising results. An impure language with lazy
evaluation as default is a bad idea.


