
Course info Introduction to compiling Examples Javalette LLVM

Compiler construction 2015

Lecture 1

Course info

Introduction to compiling

Some examples

Project description

Source

Back endFront end
program
Target

IRprogram

Course info Introduction to compiling Examples Javalette LLVM

Compiler Construction 2015

What is it?
Hands-on, learning-by-doing course, where you implement your
own compiler.

Related course
Companion course to (and optional continuation of) Programming
Language Technology in period 3.

Focus
Compiler backend and runtime issues.

Course info Introduction to compiling Examples Javalette LLVM

Why learn to write a compiler?

Few people ever write (or extend, or maintain) compilers for real
programming languages.

But knowledge of compiler technology is useful anyhow:

Tools and techniques are useful for other applications –
including but not limited to small-scale languages for various
purposes;

Understanding compiling gives deeper understanding of
programming language concepts – and thus makes you a
more efficient programmer.

Course info Introduction to compiling Examples Javalette LLVM

Course aims

After this course you will

have experience of implementing a complete compiler for a
simple programming language, including

lexical and syntactic analysis (using standard tools);
type checking and other forms of static analysis;
code generation and optimization for different target
architectures (LLVM, x86, . . .).

understand basic principles of run-time organisation,
parameter passing, memory management etc in programming
languages;

know the main issues in compiling imperative and
object-oriented languages.

Course info Introduction to compiling Examples Javalette LLVM

Course organisation

Teachers
Luciano Bello (grading)
Josef Svenningsson (lectures, supervision, grading, course
responsible)
Email addresses, offices at course web site.

Teaching

10 lectures. Tuesdays 13–15 and Fridays 13–15.
Lots of holidays where there are no lectures. Check schedule.

Project supervision. On demand via email (anytime) or visit
during my office hours, Mondays 15.15–17.

Google group

There is a Google group for announcements, asking questions and
finding lab partners. Make sure to sign up.

Course info Introduction to compiling Examples Javalette LLVM

Examination

Grading

3/4/5 scale is used.

Your grade is entirely based on your project; there are several
alternative options, detailed in the project description.

Need not decide on ambition level in advance.

Individual oral exam in exam week.

Details on the course web site.

Project groups

We recommend that you work in groups of two.
Individual work is permitted but discouraged.

The course’s Google group can be used to find project partner.

Course info Introduction to compiling Examples Javalette LLVM

Course evalutation

Evaluation the course
The course will be evaluated according to Chalmers course
evaluation policy.

Student representatives

Today we will appoint student representatives which will help with
the course evalutation.

Course info Introduction to compiling Examples Javalette LLVM

Compiler technology

Very well-established field of computing science, with mature
theory and tools for some subproblems and huge engineering
challenges for others.

Compilers provide a fundamental infrastructure for all of
computing. Crucial to make efficient use of resources.

Advances in computer architecture lead to new challenges
both in programming language design and in compiling.

Current grand challenge

Multi-core processors.
How should programmers
exploit parallellism?

Course info Introduction to compiling Examples Javalette LLVM

What is a compiler?

A compiler is a translator

A compiler translates programs in one language (the source
language) into another language (the target language).
Typically, the target laguage is more “low-level” than the source
language.
Examples:

C++ into assembly language.

Java into JVM bytecode.

JVM bytecode into x86 assembly.

Haskell into C.

Course info Introduction to compiling Examples Javalette LLVM

Why is compiling difficult?

The semantic gap

The source program is structured into (depending on
language) classes, functions, statements, expressions, . . .

The target program is structured into instruction sequences,
manipulating memory locations, stack and/or registers and
with (conditional) jumps.

Source code
8*(x+5)-y

x86 assembly

movl 8(%ebp), %eax

sall $3, %eax

subl 12(%ebp), %eax

addl $40, %eax

JVM assembly
bipush 8

iload_0

iconst_5

iadd

imul

iload_1

isub
Course info Introduction to compiling Examples Javalette LLVM

Basic structure of a compiler

Source

Back endFront end
program
Target

IRprogram

Intermediate representation

A notation separate from
source and target language,
suitable for analysis and
improvement of programs.

Examples:

Abstract syntax trees.

Three-address code.

JVM assembly.

Front and back end
Front end: Source to IR.

Lexing.

Parsing.

Type-checking.

Back end: IR to Target.

Analysis.

Code improvement.

Code emission.

Course info Introduction to compiling Examples Javalette LLVM

Some variations

One-pass or multi-pass

Already the basic structure implies at least two passes, where a
representation of the program is input and another is output.

For some source languages, one-pass compilers are possible.

Most compilers are multi-pass, often using several IR:s.

Pros and cons of multi-pass compilers

– Longer compilation time.

– More memory consumption.

+ SE aspects: modularity, portability, simplicity,. . .

+ Better code improvement.

+ More options for source language.

Course info Introduction to compiling Examples Javalette LLVM

Compiler collections

C
ends
Back

ends
Front

PPC code

MIPS code

x86 code

IR

. . .

FORTRAN

Ada

C++

More compilers with less work

Compilers for m languages and n architectures with m + n
components.

Requires an IR that is language and architecture neutral.

Well-known example: GCC.

Course info Introduction to compiling Examples Javalette LLVM

Compiling for virtual machines

Back

machine code
Virtualend

C

C++

Ada

FORTRAN

. . .

IR

Front
ends

Target code for virtual (abstract) machine

Interpreter for virtual machine code written for each (real)
architecture.

Can be combined with JIT compilation to native code.

Was popular 40 years ago but fell out of fashion.

Strongly revived by Java’s JVM, Microsoft’s .NET, LLVM.

Course info Introduction to compiling Examples Javalette LLVM

Our course project

Many options

One or more backends; LLVM/x86 code.

Various source language extensions.

More details later today. See also course web site.

Course info Introduction to compiling Examples Javalette LLVM

Front end tasks

IF

x > 100 y 1

IF LPAR ID/x GT LIT/100

if (x > 100) y = 1;

RPAR ID/y EQ LIT/1 SEMI

ID OP LIT ID LIT

REXP ASS

Lexing

Converts source code char stream to token
stream.
Good theory and tools.

Parsing

Converts token stream to abstract syntax trees
(AST:s).
Good theory and tools.

Type-checking

Checks and annotates AST.
Good theory and programming patterns.

Course info Introduction to compiling Examples Javalette LLVM

Back end tasks

Some general comments

Not as well-understood, hence more difficult.

Several sub-problems are inherently difficult (e.g.,
NP-complete or even undecidable); hence heuristic
approaches necessary.

Large body of knowledge, using many clever algorithms and
data structures.

More diverse; many different IR:s and analyses can be
considered.

Common with many optimization passes; trade-off between
compilation time and code quality.

Course info Introduction to compiling Examples Javalette LLVM

Compiling and linking

Why is linking necessary?

With separate compilation of modules, even native code
compiler cannot produce executable machine code.

Instead, object files with unresolved external references are
produced by the compiler.

A separate linker combines object files and libraries, resolves
references and produces an executable file.

Separate compilation and code optimization

Code improvement is easy within a basic block (code
sequence with one entry, one exit and no internal jumps).

More difficult across jumps.

Still more difficult when interprocedural improvement is tried.

And seldom tried across several compilation units . . .

Course info Introduction to compiling Examples Javalette LLVM

The beginning: FORTRAN 1954 – 57

Target machine: IBM704

≤ 36kb primary (magnetic core) memory.
One accumulator, three index registers.
≈ 0.1− 0.2 ms/instruction.

Compiler phases
1 (Primitive) lexing, parsing, code generation for expressions.
2 Optimization of arrays/DO loop code.
3 Code merge from previous phases.
4 Data flow analysis, preparing for next phase.
5 Register assignment.
6 Assembly.

Course info Introduction to compiling Examples Javalette LLVM

GCC: Gnu Compiler Collection 1985 –

Goals
Free software; key part of GNU operating system.

Status
2.5 million lines of code, and growing.

Many front- and backends.

Very widespread use.

Monolithic structure, difficult to learn internals.

Up to 26 passes.

Course info Introduction to compiling Examples Javalette LLVM

LLVM (Low Level Virtual Machine) 2002 –

Goals
Multi-stage code improvement, throughout life cycle.

Modular design, easy to grasp internal structure.

Practical, drop-in replacement for other compilers (e.g. GCC).

LLVM IR: three-address code in SSA form, with type
information.

Status
New front end (CLANG) released (for C, C++ and Obj. C).

GCC front end adapted to emit LLVM IR.

LLVM back ends of good quality available.

Course info Introduction to compiling Examples Javalette LLVM

LLVM optimization architecture

Linker
C

LLVM
native+LLVM

profile

codeprofile

Offline Optimizer

Runtime optimizer

Host Machine

Libraries

.exe.oCompiler

Code optimization opportunities

During compilation to LLVM (as in all compilers).

When linking modules and libraries.

Recompilation of hot-spot code at run-time, based on run-time
profiling (LLVM code part of executable).

Off-line, when computer is idle, based on stored profile info.

Course info Introduction to compiling Examples Javalette LLVM

CompCert 2005 –

Program verification

For safety-critical software, formal verification of program
correctness may be worth the cost.

Such verification is typically done of the source program.
So what if the compiler is buggy?

Use a certified compiler!

CompCert is a compiler for a large subset of C, with PowerPC
assembler as target language.

Written in Coq, a proof assistant for formal proofs.

Comes with a machine-checked proof that for any program,
which does not generate a compilation error, the source and
target programs behave identically. (Precise statement needs
more details.)

Course info Introduction to compiling Examples Javalette LLVM

CompCert architecture

Intermediate constructions
Eight intermediate languages.

Six type systems.

Thirteen passes.

Course info Introduction to compiling Examples Javalette LLVM

Personal interest: Feldspar

Feldspar programming language

Domain specific language for embedded programming and digital
signal processing in particular. Compositional constructs for array
programming. Designed to be easily parallelizeable and have
predictable performance.
Developed in collaboration with Ericsson. Intended to run on base
stations.

Implementation

Embedded in Haskell, i.e. reuses Haskell’s parser and type
checker.

Generates C code.

Course info Introduction to compiling Examples Javalette LLVM

Project languages

Recall
Two or more backends; JVM/LLVM/x86 code.

Various source language extensions.

Today we will discuss the languages involved.

Course info Introduction to compiling Examples Javalette LLVM

Source language

Javalette
A simple imperative language in C-like syntax.

A Javalette program is a sequence of function definitions, that
may be (mutually) recursive.

One of the functions must be called main, have result type
int and no parameters.

Restrictions
Basic language is very restricted:
No arrays, no pointers, no modules . . .

Course info Introduction to compiling Examples Javalette LLVM

Program environment

External functions
Procedures:

void printInt (int i)

void printDouble (double d)

void printString (string s)

void error ()

Functions:

int readInt ()

double readDouble ()

One file programs

Except for calling the above routines, the complete program is
defined in one file.

Course info Introduction to compiling Examples Javalette LLVM

Types and literals

Types

Javalette has the types

int, with literals described by digit+;

double, with literals digit+ . digit+ [(e | E) [+ | -] digit+];

bool, with literals true and false.

In addition, the type void can be used as return type for
“functions” to be used as statements.

Notes
The type-checker may profit from having an internal type of
functions.

String literals can be used as argument to printString;
otherwise, there is no type of strings.

Course info Introduction to compiling Examples Javalette LLVM

Function definitions

Syntax

A function definition has a result type, a name, a parameter list in
parentheses and a body, which is a block (see below).

A parameter list consists of parameter declarations separated by
commas; it may be empty.

A parameter declaration is a type followed by a name.

return statements
All functions must return a result of their result type.

Procedures may return without a value and may also omit the
return statement (“fall off the end”).

Course info Introduction to compiling Examples Javalette LLVM

Example of function definition

int fact (int n) {

int i,r;

i = 1;

r = 1;

while (i < n+1) {

r = r * i;

i++;

}

return r;

}

Course info Introduction to compiling Examples Javalette LLVM

Statements

The following statements forms exist in Javalette
(details in project description):

Empty statement.

Variable declaration.

Assignment statement.

Increment and decrement.

Return-statement.

Procedure call.

If-statement (with and without else-part).

While-statement.

Block (a sequence of statements enclosed in braces).

Terminating semicolon

The first six statement forms end with semicolon; blocks do not.

Course info Introduction to compiling Examples Javalette LLVM

Identifiers, declarations and scope

Identifiers
An identifier (a name) is a letter, optionally followed by letters,
digits and underscores.
Reserved words (else if return while) are not identifiers.

Declarations
A variable (a name) must be declared before it is used.
Otherwise, declarations may be anywhere in a block.

Scope

A variable may only be declared once within a block.
A declaration shadows possible other declarations of the same
variable in enclosing blocks.

Course info Introduction to compiling Examples Javalette LLVM

Expressions

The following expression forms exist in Javalette:

Variables and literals.

Binary operator expressions with operators

+ - * / % < > >= <= == != && ||

Unary operator expressions with operators - and !.

Function calls.

Notes
&& and || have lazy semantics in the right operand.

Arithmetic operators are overloaded in types int and double,
but both operands must have the same type (no casts!).

Course info Introduction to compiling Examples Javalette LLVM

Part A of the project

Contents
Compiler front end, including

Lexing and parsing.
Building an IR of abstract syntax trees.
Type-checking and checking that functions always return.

BNFC source file for Javalette offered for use.

Deadline
You must submit part A at the latest Sunday, April 19 at midnight.

Late submissions will only be accepted if you have a really good
reason.

Course info Introduction to compiling Examples Javalette LLVM

Part B of the project

LLVM backend
Back end for LLVM. Typed version of three-address code (virtual
register machine).
Submission deadline Sunday, May 10 at midnight.

Course info Introduction to compiling Examples Javalette LLVM

Part C of the project

Extensions
One or more language extensions to Javalette.
Submission deadline Sunday, May 24 at midnight.

Possible extensions
Javalette language extensions. One or more of the following:

For loops and arrays; restricted forms. Two versions.
Dynamic data structures (lists, trees, etc).
Classes and objects. Two versions.

Native code generator. (Support offered only for x86). Needs
complete treatment of function calls.

See full list in the project description on the course web page.

Course info Introduction to compiling Examples Javalette LLVM

LLVM: A virtual register machine

Not so different from JVM
Instead of pushing values onto a stack, store them in registers
(assume unbounded supply of registers).

Control structures similar to Jasmin.

High-level function calls with parameter lists.

LLVM can be interpreted/JIT-compiled directly or serve as input to
a retargeting step to real assembly code.

Course info Introduction to compiling Examples Javalette LLVM

LLVM example: fact Part 1

define i32 @main() {

entry: %t0 = call i32 @fact(i32 7)

call void @printInt(i32 %t0)

ret i32 0

}

define i32 @fact(i32 %__p__n) {

entry: %n = alloca i32

store i32 %__p__n , i32* %n

%i = alloca i32

%r = alloca i32

store i32 1 , i32* %i

store i32 1 , i32* %r

br label %lab0

Course info Introduction to compiling Examples Javalette LLVM

LLVM example: fact Part 2

lab0: %t0 = load i32* %i

%t1 = load i32* %n

%t2 = icmp sle i32 %t0 , %t1

br i1 %t2 , label %lab1 , label %lab2

lab1: %t3 = load i32* %r

%t4 = load i32* %i

%t5 = mul i32 %t3 , %t4

store i32 %t5 , i32* %r

%t6 = load i32* %i

%t7 = add i32 %t6 , 1

store i32 %t7 , i32* %i

br label %lab0

lab2: %t8 = load i32* %r

ret i32 %t8

}

Course info Introduction to compiling Examples Javalette LLVM

Optimization of LLVM code

Many possibilities

Important optimizations can be done using this IR, many based on
data flow analysis (later lecture). LLVM tools great for studying
effects of various optimizations.
Examples:

Constant propagation

Common subexpression elimination

Dead code elimination

Moving code out of loops.

You should generate straightforward code and rely on LLVM tools
for optimization.

Course info Introduction to compiling Examples Javalette LLVM

LLVM optimization: example

proj> cat myfile.ll | llvm-as | opt -std-compile-opts

> myfileopt.bc

proj> llvm-dis myfileopt.bc

proj> more myfileopt.ll

declare void @printInt(i32)

define i32 @main() {

entry:

tail call void @printInt(i32 5040)

ret i32 0

}

continues on next slide

Course info Introduction to compiling Examples Javalette LLVM

LLVM optimization: example

define i32 @fact(i32 %__p__n) nounwind readnone {

entry:

%t23 = icmp slt i32 %__p__n, 1

br i1 %t23, label %lab2, label %lab1

lab1:

%t86 = phi i32 [%t5, %lab1], [1, %entry]

%t05 = phi i32 [%t7, %lab1], [1, %entry]

%t5 = mul i32 %t86, %t05

%t7 = add i32 %t05, 1

%t2 = icmp sgt i32 %t7, %__p__n

br i1 %t2, label %lab2, label %lab1

lab2:

%t8.lcssa = phi i32 [1, %entry], [%t5, %lab1]

ret i32 %t8.lcssa

}

Course info Introduction to compiling Examples Javalette LLVM

From LLVM to (x86) assembly

The main tasks
Instruction selection

(Register allocation)

(Instruction scheduling)

Function calls: explicit handling of activation records. Calling
conventions, special registers . . .

Course info Introduction to compiling Examples Javalette LLVM

Final words

How to choose implementation language?

Haskell is the most powerful language. Data types and
pattern-matching makes for efficient programming.
State is handled by monadic programming; the second lecture
will give some hints.

Java, C++ is more mainstream, but will require a lot of code.
But you get a visitor framework for free when using BNFC.
BNFC patterns for Java are more powerful than for C++.

Testing

On the web site you can find a moderately extensive testsuite of
Javalette programs. Test at every stage!

You have a lot of code to design, write and test; it will take more
time than you expect. Plan your work and allow time for problems!

Course info Introduction to compiling Examples Javalette LLVM

What next?

Find a project partner and choose implementation language.

Read the project instruction.

Get started!

Really, get started!

If you reuse front end parts, e.g. from Programming Language
Technology, make sure you conform to Javalette definition.

Front end should ideally be completed during this week.

