Course info
€00000

Compiler construction 2015 Compiler Construction 2015

Lecture 1

Hands-on, learning-by-doing course, where you implement your
@ Course info own compiler.

@ Introduction to compiling

Related course

Companion course to (and optional continuation of) Programming
Language Technology in period 3.

Compiler backend and runtime issues. I

CHALMERS CHALMERS

| \

@ Some examples
@ Project description

Source ————— Target
program IR program
—— | Frontend - Back end

Course info Course info
0®0000 00®000

Why learn to write a compiler? Course aims

After this course you will

@ have experience of implementing a complete compiler for a
simple programming language, including
o lexical and syntactic analysis (using standard tools);
o type checking and other forms of static analysis;

Few people ever write (or extend, or maintain) compilers for real
programming languages.

But knowledge of compiler technology is useful anyhow:

@ Tools and techniques are useful for other applications — e code generation and optimization for different target
including but not limited to small-scale languages for various architectures (LLVM, x86, ...).
purposes; @ understand basic principles of run-time organisation,
@ Understanding compiling gives deeper understanding of parameter passing, memory management etc in programming
programming language concepts — and thus makes you a languages;
more efficient programmer. @ know the main issues in compiling imperative and

object-oriented languages.

CHALMERS CHALMERS

Course info
000800

Course organisation

Teachers

Luciano Bello (grading)

Josef Svenningsson (lectures, supervision, grading, course
responsible)

Email addresses, offices at course web site.

Teaching

@ 10 lectures. Tuesdays 13—-15 and Fridays 13-15.
Lots of holidays where there are no lectures. Check schedule.

| A

@ Project supervision. On demand via email (anytime) or visit
during my office hours, Mondays 15.15-17.

| \

Google group

There is a Google group for announcements, asking questions and
finding lab partners. Make sure to sign up.

y

Course info
00000e

Course evalutation

Evaluation the course

The course will be evaluated according to Chalmers course
evaluation policy.

| \

Student representatives

Today we will appoint student representatives which will help with
the course evalutation.

CHALMERS

-MERS

Course info
000000

Examination

@ 3/4/5 scale is used.

@ Your grade is entirely based on your project; there are several
alternative options, detailed in the project description.

@ Need not decide on ambition level in advance.
@ Individual oral exam in exam week.

Details on the course web site.

| \

Project groups
We recommend that you work in groups of two.
Individual work is permitted but discouraged.

The course’s Google group can be used to find project partner.

y

CHALMERS

Introduction to compiling

90000000000

Compiler technology

@ Very well-established field of computing science, with mature
theory and tools for some subproblems and huge engineering
challenges for others.

@ Compilers provide a fundamental infrastructure for all of
computing. Crucial to make efficient use of resources.

@ Advances in computer architecture lead to new challenges
both in programming language design and in compiling.

Current grand challenge

Multi-core processors.
How should programmers
exploit parallellism?

CHALMERS

Introduction to compiling Introduction to compiling
08000000000 00800000000

What is a compiler? Why is compiling difficult?

The semantic gap

@ The source program is structured into (depending on
language) classes, functions, statements, expressions, . . .

A compiler is a translator

A compiler translates programs in one language (the source
language) into another language (the target language).
Typically, the target laguage is more “low-level” than the source

@ The target program is structured into instruction sequences,
manipulating memory locations, stack and/or registers and
with (conditional) jumps.

language.
Examples:
@ C++ into assembly language. Source code x86 assembly JVM assembly
@ Java into JVM bytecode. 8% (x+5) -y movl 8(%ebp) , %eax bipush 8
@ JVM bytecode into x86 assembly. sall $3, Jeax %load_o
@ Haskell into C. subl 12(/°e:bp) , heax }Const_s
’ addl $40, %eax iadd
imul
CHALMERS l l Oad_ 1 ERS
isub

Introduction to compiling
00080000000

Introduction to compiling
0000@000000

Basic structure of a compiler Some variations

Source Target One-pass or multi-pass

IR (] A q q
_program | & ont end »| Back end |———— Already the basic structure implies at least two passes, where a

representation of the program is input and another is output.

Intermediate representation Front and back end @ For some source languages, one-pass compilers are possible.

A notation separate from Front end: Source to IR. @ Most compilers are multi-pass, often using several IR:s.
source and target language, @ Lexing.

suitable for analysis and o Parsing. Pros and cons of multi-pass compilers

improvement of programs. — Longer compilation time.

y

@ Type-checking.

Examples: Back end: IR to Target. — More memory consur.nption. -
@ Abstract syntax trees. o Analysis. + SE aspects: modularity, portability, simplicity,. . .
@ Three-address code. o Code improvement. + Better code improvement.
@ JVM assembly. + More options for source language.

) @ Code emission.

4
« MERS CHALMERS

Introduction to compiling
00000800000

Introduction to compiling
00000080000

Compiler collections

Front

ends
Back

C++ :] x86 code

Ada ° :] MIPS code,
FORTRAN / \ :] _PPCcode

More compilers with less work

@ Compilers for m languages and n architectures with m+ n
components.

@ Requires an IR that is language and architecture neutral.

@ Well-known example: GCC.

CHALMERS

Introduction to compiling
00000008000

Our course project

LLVM backend

Frontend

%86

O ¢

Many options
@ One or more backends; LLVM/x86 code.
@ Various source language extensions.

More details later today. See also course web site.

~ +ALMERS

Compiling for virtual machines

c
—]
Ada :] \ a machine code

Target code for virtual (abstract) machine

@ Interpreter for virtual machine code written for each (real)
architecture.

@ Can be combined with JIT compilation to native code.
@ Was popular 40 years ago but fell out of fashion.
@ Strongly revived by Java’s JVM, Microsoft’s .NET, LLVM.

+ -MERS

Introduction to compiling
00000000800

Front end tasks

if (x > 100) y = 1;

Lexing

Converts source code char stream to token
stream.
Good theory and tools.

IF LPAR ID/x GT LIT/100
RPAR ID/y EQ LIT/1 SEMI

| A

Parsing
Converts token stream to abstract syntax trees

(AST:s).
.F Good theory and tools.
N
/"E‘XP\ '75\ Type-checking

ID OP LT ID LT

Checks and annotates AST.
Good theory and programming patterns. s

X > 100 y 1

Introduction to compiling Introduction to compiling
00000000080 00000000008

Back end tasks Compiling and linking

Why is linking necessary?
Some general comments @ With separate compilation of modules, even native code

o Not as well-understood, hence more difficult. compiler cannot produce executable machine code.

@ Instead, object files with unresolved external references are

@ Several sub-problems are inherently difficult (e.g.,)
produced by the compiler.

NP-complete or even undecidable); hence heuristic
approaches necessary. @ A separate linker combines object files and libraries, resolves

@ Large body of knowledge, using many clever algorithms and references and produces an executable file. J

data structures. — ——
o Separate compilation and code optimization

More diverse; many different IR:s and analyses can be)) -)
considered. @ Code improvement is easy within a basic block (code
sequence with one entry, one exit and no internal jumps).

@ Common with many optimization passes; trade-off between

compilation time and code quality. ® More difficult across jumps.

@ Still more difficult when interprocedural improvement is tried.

@ And seldom tried across several compilation units ...

CHALMERS _} -MERS

Examples
©000000

Examples
0®00000

The beginning: FORTRAN 1954 — 57 GCC: Gnu Compiler Collection 1985 —

@ Free software; key part of GNU operating system. \

Target machine: IBM704

< 36kb primary (magnetic core) memory.
One accumulator, three index registers.
~ 0.1 — 0.2 ms/instruction.

Compiler phases

@ (Primitive) lexing, parsing, code generation for expressions.

@ 2.5 million lines of code, and growing.

@ Many front- and backends.

© Optimization of arrays/DO loop code. @ Very widespread use.

O Code merge from previous phases. @ Monolithic structure, difficult to learn internals.

© Data flow analysis, preparing for next phase. o Up to 26 passes.

© Register assignment.
© Assembly.

V.

CHALMERS CHALMERS

Examples
0080000

LLVM (Low Level Virtual Machine) 2002 —

Examples
0008000

LLVM optimization architecture

@ Multi-stage code improvement, throughout life cycle.
@ Modular design, easy to grasp internal structure.
@ Practical, drop-in replacement for other compilers (e.g. GCC).

@ LLVM IR: three-address code in SSA form, with type
information.

@ New front end (CLANG) released (for C, C++ and Obj. C).
@ GCC front end adapted to emit LLVM IR.
@ LLVM back ends of good quality available.

CHALMERS

Examples

0000e00

/ profile “’m’e
©—>-{compier | 0
Linker Ceexe O (Host Machine)
LLVM native+ "
LLVM ‘proflle
Offline Optimizer

Code optimization opportunities

@ During compilation to LLVM (as in all compilers).
@ When linking modules and libraries.

@ Recompilation of hot-spot code at run-time, based on run-time
profiling (LLVM code part of executable).

@ Off-line, when computer is idle, based on stored profile info.

CHALMERS

Examples
0000000

CompCert 2005 —

Program verification

@ For safety-critical software, formal verification of program
correctness may be worth the cost.

@ Such verification is typically done of the source program.
So what if the compiler is buggy?

Use a certified compiler!

@ CompCert is a compiler for a large subset of C, with PowerPC
assembler as target language.

@ Written in Coq, a proof assistant for formal proofs.

@ Comes with a machine-checked proof that for any program,
which does not generate a compilation error, the source and
target programs behave identically. (Precise statement needs
more details.)

+ -MERS

CompCert architecture

Intermediate constructions

@ Eight intermediate languages.
@ Six type systems.
@ Thirteen passes.

CHALMERS

Examples Javalette
000000@ ©00000000000

Personal interest: Feldspar Project languages

Feldspar programming language N

Domain specific language for embedded programming and digital

signal processing in particular. Compositional constructs for array —
programming. Designed to be easily parallelizeable and have

predictable performance.

Developed in collaboration with Ericsson. Intended to run on base
stations.

® Two or more backends; JVM/LLVM/x86 code.

@ Embedded in Haskell, i.e. reuses Haskell’s parser and type
checker.

%86

O ¢

@ Various source language extensions.

Today we will discuss the languages involved.

@ Generates C code.

CHALMERS CHALMERS

Javalette Javalette
[o] Telelolelelelelolole} 00®000000000

Source language Program environment

External functions

@ Procedures:

Javalette void printInt (int i)

@ A simple imperative language in C-like syntax. void printDouble (double d)
@ A Javalette program is a sequence of function definitions, that void printString (string s)
may be (mutually) recursive. void error ()
@ One of the functions must be called main, have result type
int and no parameters. @ Functions:

int readInt ()
double readDouble ()
Basic language is very restricted:
No arrays, no pointers, no modules . . .

\
| A

One file programs

Except for calling the above routines, the complete program is
CHALMERS defined in one file. ers

v

Javalette
000080000000

Javalette
000800000000

Types and literals Function definitions

Javalette has the types
@ int, with literals described by digit+; A function definition has a result type, a name, a parameter list in

parentheses and a body, which is a block (see below).

A parameter list consists of parameter declarations separated by
commas; it may be empty.

@ double, with literals digit+ . digit+[(e | E) [+ | -] digit+];
@ bool, with literals true and false.

In addition, the type void can be used as return type for

. ionisat followed by a .
“functions” to be used as statements. I [P E e | ype W yaname

v

Notes return statements

o The type-checker may profit from having an internal type of All functions must return a result of their result type.
functions. Procedures may return without a value and may also omit the

@ String literals can be used as argument to printString; return statement (*fall off the end"). J

otherwise, there is no type of strings.

| \

y
CHALMERS CHALMERS

Javalette Javalette

Example of function definition Statements
The following statements forms exist in Javalette
(details in project description):
int fact (int n) { @ Empty statement.
?Z tr; @ Variable declaration.
r=1; @ Assignment statement.
while (i < n+1) { @ Increment and decrement.
r=r*ij @ Return-statement.
it @ Procedure call.
ie v, sag o If-statement (with and without else-part).
} @ While-statement.
) @ Block (a sequence of statements enclosed in braces). |
Terminating semicolon
CHALMERS The first six statement forms end with semicolon; blocks do not. \-“"ERS

Javalette
000000008000

Javalette
000000080000

Identifiers, declarations and scope Expressions

Identifiers

An identifier (a name) is a letter, optionally followed by letters,
digits and underscores.
Reserved words (else if return while) are not identifiers. @ Binary operator expressions with operators

+ - % /% <> >=<=== 1= && ||

The following expression forms exist in Javalette:
@ Variables and literals.

Declarations @ Unary operator expressions with operators - and !.
A variable (a name) must be declared before it is used.
Otherwise, declarations may be anywhere in a block.

@ Function calls.

V.

Scope @ && and | | have lazy semantics in the right operand.
A variable may only be declared once within a block.

A declaration shadows possible other declarations of the same
variable in enclosing blocks.

| \

@ Arithmetic operators are overloaded in types int and double,
but both operands must have the same type (no casts!).

v

CHALMERS CHALMERS

Javalette Javalette

000000000800 000000000080

Part A of the project Part B of the project

Contents
@ Compiler front end, including
o Lexing and parsing.
o Building an IR of abstract syntax trees. LLVM backend
e Type-checking and checking that functions always return. Back end for LLVM. Typed version of three-address code (virtual

BNFC source file for Javalette offered for use. register machine).
Submission deadline Sunday, May 10 at midnight.

Deadline
You must submit part A at the latest Sunday, April 19 at midnight.

Late submissions will only be accepted if you have a really good
reason.

\ A

CHALMERS CHALMERS

Javalette LLVM
000000000008 ©00000000

Part C of the project LLVM: A virtual register machine

One or more language extensions to Javalette. Not so different from JVM

Submission deadiine Sunday, May 24 at midnight. y @ Instead of pushing values onto a stack, store them in registers

assume unbounded supply of registers).
Possible extensions (pply g)

. . @ Control structures similar to Jasmin.
@ Javalette language extensions. One or more of the following:

@ High-level function calls with parameter lists.

o For loops and arrays; restricted forms. Two versions.)
o Dynamic data structures (lists, trees, etc).
o Classes and objects. Two versions. LLVM can be interpreted/JIT-compiled directly or serve as input to

@ Native code generator. (Support offered only for x86). Needs a retargeting step to real assembly code.

complete treatment of function calls.

@ See full list in the project description on the course web page.

CHALMERS CHALMERS

LLVM LLVM
[o] IeIelelelelele] [e]e] Telelelelele]

LLVM example: fact Part 1 LLVM example: fact Part2

lab0: %t0 = load i32% %i

define i32 @main() { vl load i32%
it1 = load i A

entry: %t0 = call i32 @fact(i32 7)

call void @printInt(i32 %t0) At2.= 3cmp sle 132.At0 o 1ot .
ret i32 0 br il %t2 , label %labl , label %lab2

} labl: %t3 = load i32% %r
%t4 = load i32% %i
%t5 = mul i32 %t3 , %t4
store i32 %t5 , 132* Y%r
store 132 %__p__n , i32* Yn ?tG = load.132j hi
%i = alloca 132 #ET = add 132 7t6 , 1
Yr = alloca 132 store i32 %t7 , i32* i
br label %labO

store i32 1 , i32% %i . . 9
store 132 1 . 132+ Yr lab2: %t8 = load i32% Yr
ret i32 %t8

br label %1labO

define i32 @fact(i32 %__p__n) {
entry: %n = alloca i32

- }

CHALMERS « (MERS

LLVM
[e]e]e] Jelelele]e]

LLVM
[e]e]e]e] lelelele]

Optimization of LLVM code LLVM optimization: example

Many possibilities proj> cat myfile.1ll | llvm-as | opt -std-compile-opts
Important optimizations can be done using this IR, many based on > myfileopt.bc
data flow analysis (later lecture). LLVM tools great for studying proj> llvm-dis myfileopt.bc
effects of various optimizations. proj> more myfileopt.ll
Examples: declare void @printInt(i32)
@ Constant propagation define 132 @main() {
@ Common subexpression elimination entry:
L tail call void @printInt(i32 5040)
@ Dead code elimination ret i32 0
@ Moving code out of loops. }
You should generate straightforward code and rely on LLVM tools
for optimization.) continues on next slide)
LLVM LLVM
LLVM optimization: example From LLVM to (x86) assembly
define 132 @fact(i32 %__p__n) nounwind readnone {
entry:
%t23 = icmp slt i32 %__p__n, 1
br il %t23, label %lab2, label %labl The main tasks
131/’1: s D ra g : @ Instruction selection
%t86 = phi i32 [%t5, %labl 1, 1, %entry . .
o (Register all ion
%t05 = phi i32 [%t7, %labl 1, [1, %entry] (Reg Ste, allocatio)
t5 = mul i32 %t86, %t05 @ (Instruction scheduling)
%t7 = add i32 %t05, 1 @ Function calls: explicit handling of activation records. Calling
»t2 = icmp sgt 132 %t7, %__p__n conventions, special registers . ..
br il %t2, label %lab2, label %labil
lab2:
%t8.1lcssa = phi i32 [1, %entry 1, [%t5, %labl]
ret 132 %t8.lcssa
}
« (MERS CHALMERS

LLVM LLVM
[e]e]e]e]e]e]e] To] 00000000

Final words What next?

How to choose implementation language?

@ Haskell is the most powerful language. Data types and
pattern-matching makes for efficient programming.
State is handled by monadic programming; the second lecture
will give some hints.

Find a project partner and choose implementation language.
Read the project instruction.

Get started!

Really, get started!

@ Java, C++ is more mainstream, but will require a lot of code.
But you get a visitor framework for free when using BNFC.
BNFC patterns for Java are more powerful than for C++.

If you reuse front end parts, e.g. from Programming Language
Technology, make sure you conform to Javalette definition.

. . . . Front end should ideally be completed during this week.
On the web site you can find a moderately extensive testsuite of o

Javalette programs. Test at every stage!

| \
(]

Testing

You have a lot of code to design, write and test; it will take more
time than you expect. Plan your work and allow time for problems!

« -MERS CHALMERS

