Real-Time Scheduling: Some Results and Open
Problems

Risat Mahmud Pathan

Chalmers University of Technology, Sweden

Introduction
e Multiprocessors, specifically CMPs, are considered for many
embedded real-time systems (e.g., automotive)

e The application of real-time systems are often modeled as a
collection of recurrent tasks (e.g., control applications)

e Hard real-time systems must meet all the deadlines of its
application tasks during runtime

e Problem: How can we guarantee that all the tasks deadlines
are met on m identical processors?

Task Model

@ We consider a set of recurrent real-time task set

M= {r.72,...m}
e Each task 7; has three parameters (C;, D;, T))
» Implicit-deadline if D; = T;

» Constrained-deadline if D; < T;
» Total utilization U = u; =Y &

i

e Tasks are given fixed priorities

@ Tasks are scheduled on m identical processors

Scheduling Paradigms

e Global Scheduling: task can execute on any processor even
when resumed after preemption

e Partitioned Scheduling: task can execute in exactly one
processor to which it is assigned

e Task-Splitting: few tasks are allowed to migrate (global
scheduling flavor) and each of the remaining tasks executes
on a fixed processor to which they are assigned (partitioned
scheduling flavor).

Global Fixed-Priority Scheduling

The challenge for global FP scheduling

Two Problems

o Priority Assignment: How to assign the fixed priorities
for a given task set?

e Schedulability Test: How to guarantee the
schedulability of a given task set?

Our work @ ECRTS 2011

Priority Assignment and Utilization Bound Test

Proposed new fixed-priority assignment policy, called
ISM-US, and derived the schedulability utilization bound

Priority Assignment and lterative Test

Proposed an improved fixed-priority assignment policy and
iterative schedulability test

e Utilization bound test: Compare the total utilization of a task
set with the guarantee bound (i.e., one test).

o lterative test: Apply the test to one by one task (i.e., n tests)

Utilization Bound Test

Priority Assignment Policy ISM-US

Hybrid (Slack-Monotonic) Priority Assignment (HPA)

A subset of the tasks are given slack-monotonic priority
and the other tasks are given the highest fixed-priority

Slack-Monotonic (SM)

Task 7; has higher SM priority than task 7 if and only if
(Ti— Ci < Tk — C)

Priority Assignment Policy TSM-US

If u; > us, then task 7; is given the highest fixed-priority,
otherwise, task 7; is given slack-monotonic priority

Threshold Utilization

_83m-2—-v5m?—-8m+4
ts = om—2

Priority Assignment Policy ISM-US

If u; > us, then task 7; is given the highest fixed-priority,
otherwise, task 7; is given slack-monotonic priority

Threshold Utilization

3m—-2—+v5m —-8m-+4
ths = om—2

Theorem (Utilization Bound)

If U< m-min{0.5,u;s}, then all the deadlines of task set I'
are met using global FP scheduling

State-of-the-art utilization bound
RM-US[3] M. Bertogna et. al., OPODIS 2005

If up > %, then task 7; is given the highest fixed-priority, otherwise,
task 7; is given rate-monotonic priority

Utilization Bound: '

State-of-the-art utilization bound
RM-US[}] M. Bertogna et. al., OPODIS 2005

If u > %, then task 7; is given the highest fixed-priority, otherwise,
task 7; is given rate-monotonic priority

Utilization Bound: ™!

SM-US[

If up > o f, then task 7; is given the highest fixed-priority,
otherwise, task 7; is given slack-monotonic priority

B. Andersson, OPODIS 2008

3+\f]

Utilization Bound: 3+ f

State-of-the-art utilization bound
RM-US[3] M. Bertogna et. al., OPODIS 2005

If up > %, then task 7; is given the highest fixed-priority, otherwise,
task 7; is given rate-monotonic priority

Utilization Bound: '

SM-US| B. Andersson, OPODIS 2008

3+f]

If u > = ﬁ, then task 7; is given the highest fixed-priority,
otherwise, task 7; is given slack-monotonic priority

o om
Utilization Bound: e

o’

State-of-the-art Utilization Bound

e If m< 6, then RM-US[1] is the best
e If m > 6, then SM—US[] is the best

Comparison with our bound
60 %

50 % f-n, RM-US -

40 o/o | el _— L -

30% r

20% r

Utilization bound / m

10% r

0%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of processors (m)

Figure: Utilization bounds of RM-US[]], SM—US[ﬁ] and proposed ISM-US

HPA policy and Global Scheduling

Separation of Concern

e During schedulability analysis, each highest priority task 7;'s
WCET is set to T; and one processor is (virtually) dedicated
to 7; without any concern.

e The problem now reduces to the schedulability of the other
(lower) priority tasks on (m — m'’) processors (n7 is the
number of heavy tasks)

lterative Schedulability Test

lterative Schedulability test

e We consider constrained-deadline task systems

e We improved the priority assignment policy for an
iterative test, called the DA-1.C test, proposed by
Davis and Burns (RTSJ, 2011).

Interference and Workload

When considering the schedulability of a lower
priority task 7, within the scheduling window, the
DA-LC test considers

e the interference of each higher priority task
Ti € hp(k)

e based on the workload of each higher priority
task 7; in set hp(k)

e where each higher priority task 7; is considered
either a carry-in or a non carry-in task

Carry-in and Non Carry-in Interference

- T — T — T — >t T —>

T i J P\ v P\ v P A4 T -
rp dp rp+1 d n+1 rp+N d PN rp+N+1 dp+N+1 el
1 1 I 1 1 1 1 1

A
-
Y

/.Ck = carry-in interference of task 7; on 7

]

Carry-in and Non Carry-in Interference

-— T — T — > T — > T —>
T i % v h v v T -
P dr rp+1 d p+1 rp+N d [rp+N+1 d PN+ 1 Ll
1 1 I 1 1 1 1 1
- L -
|C

. = carry-in interference of task 7; on 7

— T —>a—T —a—T et
F S

I

»
[qrT etz qrZ QP R -
I I I I 1 I

A

L

o
-

NC
li,k

= non carry-in interference of task 7; on 7«

The DA-1.C test

e The DA-1C test (Davis et al. RTSJ 2011) for task 74 is given
as follows:

Ik
Dy > Cx + LmJ

The DA-1.C test

e The pa-1c test (Davis et al. RTSJ 2011) for task 7 is given
as follows:

I
Dy > Cx + U;J
@ The function I, is calculated as follows:

= >IN+ > I

iehp(k) ieMax(k,m—1)

The DA-1.C test

e The DA-1C test (Davis et al. RTSJ 2011) for task 74 is given
as follows:

Ik
Dy > Cx + LmJ

@ The function I, is calculated as follows:

k=Y I+ > B

iehp(k) ieMax(k,m—1)

@ where
» Max(k, m— 1) is the set of (m — 1) higher priority tasks in hp(k)
that have the largest value of /7", and

The DA-1.C test

e The DA-LcC test (Davis et al. RTSJ 2011) for task 7 is given

as follows: /
k
> -
Dy > Cx + { J

@ The function I, is calculated as follows:

= >IN+ > I

iehp(k) ieMax(k,m—1)

e where
» Max(k, m— 1) is the set of (m — 1) higher priority tasks in hp(k)
that have the largest value of /5", and

DIFF _ |C NC
> Ii,k = Ii,k - li,k

The DA-1.C test

R. Davis and A. Burns (RTSJ, 2011) have showed that

@ Audsley’s Optimal Priority Assignment(opa) algorithm is
applicable to the DA-1.C test

e Empirically shown that DA-1L.Cc+0OPA outperforms all other
existing test

OPA+DA-LC is the state-of-the-art iterative schedulability
tests

Audsley’s opA for multiprocessors (RTSS, 2009)

Algorithm opA (Taskset A, number of processors m, Test S)

1. for each priority level k, lowest first

2 for each priority unassigned task r € A

3 If 7 is schedulable using S on m processors at priority k
4. assign 7 to priority k

5 break (continue outer loop)

6 return “unschedulable”

7. return “schedulable”

opPA+DA-LC (RTSJ, 2011)
Call opA (I', m, DA-LC)

Our Observation @ ECRTS 2011
e OPA +DA-LC is proved optimal (RTSJ, 2011).

Our Observation @ ECRTS 2011
e OPA +DA-LC is proved optimal (RTSJ, 2011).

e This combination is optimal only under the

assumption that it is applied to the entire
task set and to all processors

» i.e.,Call oPA(l', m,DA-LC)

Our Observation @ ECRTS 2011
e OPA +DA-LC is proved optimal (RTSJ, 2011).

e This combination is optimal only under the

assumption that it is applied to the entire
task set and to all processors

» i.e.,Call oPA(I', m,DA-LC)

Scope for Improvement?

e Is it possible to obtain a more effective priority
assignment if

» OPA+DA-LC is applied to a subset of the entire
task set and on a lower number of processors

~ while other tasks are assigned the highest
priorities based on HPA and predictability?

Interesting Observation
@ Recall the DA-1.C test for task 7:

Ik
Dy > Cx + {mJ

@ I, depends on (m — 1) carry-in terms

k=Y I+ > B

iehp(k) ieMax(k,m—1)

Interesting Observation
@ Recall the DA-1LC test for task 7:

Ik
Dy > Cx + {mJ

@ I, depends on (m — 1) carry-in terms

=Y e Y B

iehp(k) ieMax(k,m—1)

Observation
e If we remove one task, say 7, from hp(k) and

@ reduce the number of processors from mto (m— 1), and

@ apply the opA+DA-LC teston (I — {7,}) and on (m — 1)
processors,

@ then I depends on (m — 2) carry-in tasks in (hp(k) — {ma})

v

Example

e Consdier = {ry,...7a} and m=3

° (C,D,T)) =
{(23,33,33), (106,210, 214), (58,216, 217), (46,60, 64)}

e OPA (I, m = 3, DA-LC) returns “unschedulable”

@ /3 considers (m — 1) = 2 as carry-in task

Example

e Consdier ' = {ry,...7a}and m=3

o (G,D, T =
{(28,33,33),(106,210,214),(58,216,217),(46,60,64)}

@ OPA (I, m = 3, DA-LC) returns “unschedulable”

@ /3 considers (m — 1) = 2 as carry-in task

e The highest density (i.e.,C;/ D) task 74 is given the highest
priority

@ OPA ({1, m2, 13}, m= 2, DA-LC) returns “schedulable”

@ /3 considers (m — 1) = 1 task as carry-in task

HPA+OPA +DA-LC

Algorithm Hybridopa (I', m)
1. form=0to (m—1)

2. remove nm’ highest desnity tasks from given task set I'
3. if opA (I', m— m’, DA-LC) returns “schedulable” then
4. return “schedulable”

5. end for

6. return “unschedulable”

We call this test HP-DA-1.C test

Task Splitting Algorithm

Task Splitting

Background
« Global and partitioned method cannot guarantee
system utilization more than 50% for all task sets
(Lecture 7)

—Partitioned scheduling has task assignment step.

—Task assignment to processors is generally done
with a bin-packing algorithm.

Task Splitting
Background (cont.)
» A variation of partitioned scheduling using task-
splitting approach can achieve more than 50%

system utilization for all task sets.

» History: task-splitting for static-priority were first
proposed in July 2009 at CMU

Traditional Partitioned Scheduling

Processor A Processor B

We assume Task 2, Task 1 and Task 3 be the ordering of the tasks to assign to the
processors A and B.
Size of each task is proportional to the utilization of the task.

Traditional Partitioned Scheduling

Processor A Processor B

Partition Fails!

Task 3 cannot be assigned to any processor
because size of Task 3 is too large

Task-Splitting Partitioned Scheduling

Processor A Processor B

Task-Splitting Partitioned Scheduling

Processor A Processor B

Different subtasks of Task 3 can be assigned to different processors.
To construct the subtasks, we split Task 3.

Task-Splitting Partitioned Scheduling

Processor A Processor B .

Different subtasks of Task 3 can be assigned to different processors.
To construct the subtasks, we split Task 3.

Task-Splitting Partitioned Scheduling

Processor A Processor B

Partition Success!

Challenges in Task-Splitting

 How to design the task assignment
algorithm?
— How many splits of each task?
— How many tasks to split?

— How to ensure that subtasks of a split task do not
execute in parallel?

* How to find the guarantee bound for given
task assignment algorithm?

Some Results on Task Splitting

* ECRTS 2009, CMU: Utilization bound 65%
— Unsorted version: 60%
— Number of split tasks is (m-1)
— A task can be splitted in (m-1) parts
e |PDPS 2009, CHALMERS (Our Work):
— Utilization bound 55.2%
— Number of split tasks is m/2
— A task can be splitted in at most 2 parts

 RTA 2010, UPPSALA
— (Sorting) Utilization bound 69.3%
— Number of split tasks is (m-1)
— A task can be splitted in (m-1)parts

Dual-Priority Scheduling
(uniprocessor)

Motivation for Dual-Priority

 RM is the optimal fixed-priority algorithm with
guarantee bound 69.3%
— Each task is assigned a fixed priority

e EDF is the optimal dynamic priority algorithm with
guarantee bound 100%
— Each job/instance has a fixed-priority,

— Different instances of the same task may have different
priority

Motivation for Dual-Priority

* In EDF, the instances of a task can have n differnt
priorities
— Sometime priority level 1, sometime priority level 2, ...
Sometime priority level n

* In RM, all the instances of a task have exactly one
unique priority
— Problem: How can we introduce minimum dynamic-
priority behaviour such that higher utilization bound is
possible?

Dual-Priority Scheduling (EXAMPLE)

3 50%
T, 2 8 25%
T, 3 12 25%

e Using RM scheduling on uniprocessor, the task
set is not schedulable

_-

10 11

* The first instant of T, misses its deadline at
t=12

Dual Priority Scheduling

* Where is the problem ? | [c T |
|
iz s la |s le |z e o [ie |6 [a e

2 8
Ts 3 12

— The second instance of task T, can be delayed to allow
the first instance of task t; to complete before deadline

— How to do it?

* We can promote the priority of task T, over other tasks at the
beginning of time instant 11.

Dual Priority Scheduling

* New Priority and Promotion Point

Non-Promoted | Promoted When to promote?
Priority Priority

50% 2
T, 2 8 25% 3
T, 3 12 25% 4 1 11
Promotion point Promotion point

l |

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dual Priority Scheduling

* Research Questions (a potential MS thesis work):
— What is the priority ordering before and after
promotion?
* Possibly RM priority: before (n+1, ... 2n) and after (1, ... n)

— How the promotion points have to be calculated for
each task?

 Heuristic: Start with promotion point equal to the deadline
and then decrease it if not successful.

— OPEN PROBELM: Does dual-priority scheduling have
100% utilization bound?
* We did a lot of simulation and get YES answer for all.

Mixed-Criticality Systems

Mixed-Criticality System

An active research area in Cyber-physical systems

Many safety-critical systems are considering
integrating multiple functionalities on a single
platform (multicore)

— hosting functionalities with multiple criticality levels

The design is often subjected to certification
requirements by certification authority (CA)

— e.g., FAA or EASA for avionics

The Challenge

The certification authority (CA) is very pessimistic in
comparison to the system designer

The CA is only concerned about the correctness of
the safety-critical part

The system designer is concerned about the
correctness of the entire system

Challenge: Coming up with a scheduling strategy
that satisfies both the CA and the system designer

Current Research on MC

e Consider a particular aspect of the run-time
behavior of the system: the Worst-Case
Execution Time (WCET) of pieces of code

 The CA assumes high value for WCET

* The system designer assumes relatively lower
value for WCET

Example

e Consider uniprocessor system
* Fixed-priority scheduling
* Three jobsJ1,)2, and J3

* All are released at time zero

J2 YES 1.5 1 3.5
J3 YES 1.5 1 3.5

e Dual-Criticality Systems

Traditional Fixed-Priority Schedule
Critical? | WCET | WCET(De | Deadli
(CA) signer) ne
J1 NO - 1 2

J2 YES 1.5 1 3.5
I3 YES 1.5 1 3.5

* |fJ1is the highest priority task, then

R

0 1 2 3

one of J2 or J3 misses its deadline.

Traditional Fixed-Priority Schedule
Critical?| WCET | WCET(De | Deadli
(CA) signer) ne
J1 NO - 1 2

J2 YES 1.5 1 3.5
I3 YES 1.5 1 3.5

e |fJ1is the medium priority task, then

0 1 2 3

J3 misses its deadline

Traditional Fixed-Priority Schedule

J1 NO - 1 2

J2 YES 15 1 3.5
3 YES 15 1 3.5

* IfJ1is the lowest priority task, then

e

0 1 2 3

Job J1 misses its deadline even if both J2 and J3
executes for 1 time unit.

Traditional Fixed-Priority Schedule
Critical? | WCET | WCET(De | Deadli
(CA) signer) ne
J1 NO - 1 2

J2 YES 1.5 1 3.5
I3 YES 1.5 1 3.5

e JobJ2 and J3 are schedulable if they are given the highest
two priority levels

— But J1 misses its deadline even if J2 and J3 execute for only 1
time unit

e Traditional Fixed-priority scheduling is not suitable to
satisfy both the system designer and the CA.

A New Scheduling Scheme
| s | Ctal? | WOE(CA) | WCETDesigner) | Deadine

J2 YES 1.5 1 3.5
13 YES 15 1 3.5

* Execute J2 over [0,1). If J2 completes by 1,
then execute J1 and then J3

A New Scheduling Scheme
N R T

12 YES 15 1 3.5
3 YES 15 1 3.5

* |f J2 does not complete by 1, then drop J2 and
execute J2 over [1,1.5) and then J3 over
[1.5,3).

A New Scheduling Scheme
T T el
J1 NO - 1 2

J2 YES 1.5 1 3.5
3 YES 1.5 1 3.5

* Priority Assignment: Assign the highest priority
to J2, medium priority to J1 and the lowest
priority to J3.

* Dispatching:
— Execute J2 within [0,1).

— If J2 completes, then execute J1 within [1,2) and J3
within [2,3) or [2,3.5)

— If J2 does not complete, drop J1. Execute J2 for
additional [1,1.5) and J2 within [1.5,3).

Mixed-Criticality Sporadic Tasks
Scheduling on Multiprocessor

Each task is recurrent
— Three parameters (WCET, Deadline, Period)

Priority assighment
— How to assign fixed-priorities to the tasks?

Schedulability analysis and test

— How can we guarantee in offline that a MC task set is
schedulable (satisfies both CA and the designer)?

Multiple criticality levels
— How to deal with multiple criticality levels?

Conclusion
There is a gap between 38% and 50% guarantee
bound for global fixed-priority scheduling.

The optimal priority assignment for global fixed-
priority scheduling is still unknown.

The maximum achievable guarantee bound for
task-splitting with fixed-priority is not known.

Dual-priority scheduling is very useful for industry,
e.g, in CAN, if the utilization bound is 100%.

Analysis for certifiable mixed-criticality systems on
multiprocessors needs to be developed.

