Real-Time Scheduling: Some Results and Open Problems

Risat Mahmud Pathan

Chalmers University of Technology, Sweden

Introduction

- Multiprocessors, specifically CMPs, are considered for many embedded real-time systems (e.g., automotive)
- The application of real-time systems are often modeled as a collection of recurrent tasks (e.g., control applications)
- Hard real-time systems must meet all the deadlines of its application tasks during runtime
- Problem: How can we guarantee that all the tasks deadlines are met on *m* identical processors?

Task Model

We consider a set of recurrent real-time task set

$$\Gamma = \{\tau_1, \tau_2, \dots \tau_n\}$$

- Each task τ_i has three parameters (C_i, D_i, T_i)
 - ▶ Implicit-deadline if $D_i = T_i$
 - **Constrained-deadline** if $D_i \leq T_i$
 - ▶ Total utilization $U = \sum u_i = \sum \frac{C_i}{T_i}$
- Tasks are given fixed priorities
- Tasks are scheduled on *m* identical processors

Scheduling Paradigms

- Global Scheduling: task can execute on any processor even when resumed after preemption
- Partitioned Scheduling: task can execute in exactly one processor to which it is assigned
- Task-Splitting: few tasks are allowed to migrate (global scheduling flavor) and each of the remaining tasks executes on a fixed processor to which they are assigned (partitioned scheduling flavor).

Global Fixed-Priority Scheduling

The challenge for global FP scheduling

Two Problems

- Priority Assignment: How to assign the fixed priorities for a given task set?
- Schedulability Test: How to guarantee the schedulability of a given task set?

Our work @ ECRTS 2011

Priority Assignment and Utilization Bound Test

Proposed new fixed-priority assignment policy, called ISM-US, and derived the schedulability utilization bound

Priority Assignment and Iterative Test

Proposed an improved fixed-priority assignment policy and iterative schedulability test

- Utilization bound test: Compare the total utilization of a task set with the guarantee bound (i.e., one test).
- Iterative test: Apply the test to one by one task (i.e., *n* tests)

4 D > 4 B > 4 E > 4 E > E 990

Utilization Bound Test

Priority Assignment Policy ISM-US

Hybrid (Slack-Monotonic) Priority Assignment (HPA)

A subset of the tasks are given slack-monotonic priority and the other tasks are given the highest fixed-priority

Slack-Monotonic (SM)

Task τ_i has higher SM priority than task τ_k if and only if $(T_i - C_i < T_k - C_k)$

Priority Assignment Policy ISM-US

Policy ISM-US

If $u_i > u_{ts}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given slack-monotonic priority

Threshold Utilization

$$u_{ts} = \frac{3m-2-\sqrt{5m^2-8m+4}}{2m-2}$$

Priority Assignment Policy ISM-US

Policy ISM-US

If $u_i > u_{ts}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given slack-monotonic priority

Threshold Utilization

$$u_{ts} = \frac{3m-2-\sqrt{5m^2-8m+4}}{2m-2}$$

Theorem (Utilization Bound)

If $U \le m \cdot min\{0.5, u_{ts}\}$, then all the deadlines of task set Γ are met using global FP scheduling

State-of-the-art utilization bound

RM-US[$\frac{1}{3}$]

M. Bertogna et. al., OPODIS 2005

If $u_i > \frac{1}{3}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given *rate-monotonic* priority

Utilization Bound: $\frac{m+1}{3}$

State-of-the-art utilization bound

RM-US[$\frac{1}{3}$]

M. Bertogna et. al., OPODIS 2005

If $u_i > \frac{1}{3}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given *rate-monotonic* priority

Utilization Bound: $\frac{m+1}{3}$

$SM-US[\frac{2}{3+\sqrt{5}}]$

B. Andersson, OPODIS 2008

If $u_i > \frac{2}{3+\sqrt{5}}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given *slack-monotonic* priority

Utilization Bound: $\frac{2m}{3+\sqrt{5}}$

4□ > 4個 > 4 분 > 4분 > 분 90

State-of-the-art utilization bound

RM-US[$\frac{1}{3}$]

M. Bertogna et. al., OPODIS 2005

If $u_i > \frac{1}{3}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given *rate-monotonic* priority

Utilization Bound: $\frac{m+1}{3}$

SM-US[$\frac{2}{3+\sqrt{5}}$]

B. Andersson, OPODIS 2008

If $u_i > \frac{2}{3+\sqrt{5}}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given *slack-monotonic* priority

Utilization Bound: $\frac{2m}{3+\sqrt{5}}$

State-of-the-art Utilization Bound

- If $m \le 6$, then RM-US[$\frac{1}{3}$] is the best
- If m>6, then SM-US[$\frac{2}{3+\sqrt{5}}$] is the best

Comparison with our bound

Figure: Utilization bounds of RM-US[$\frac{1}{3}$], SM-US[$\frac{2}{3+\sqrt{5}}$] and proposed ISM-US $\frac{2}{3+\sqrt{5}}$] and proposed ISM-US

HPA policy and Global Scheduling

Separation of Concern

- During schedulability analysis, each highest priority task τ_i 's WCET is set to T_i and one processor is (virtually) dedicated to τ_i without any concern.
- The problem now *reduces* to the schedulability of the other (lower) priority tasks on (m - m') processors (m' is the number of *heavy* tasks)

Iterative Schedulability Test

Iterative Schedulability test

- We consider *constrained-deadline* task systems
- We improved the priority assignment policy for an iterative test, called the DA-LC test, proposed by Davis and Burns (RTSJ, 2011).

Interference and Workload

When considering the schedulability of a lower priority task τ_k within the *scheduling window*, the DA-LC test considers

- the *interference* of each higher priority task $\tau_i \in hp(k)$
- based on the **workload** of each higher priority task τ_i in set hp(k)
- where each higher priority task τ_i is considered either a *carry-in* or a *non carry-in* task

Carry-in and Non Carry-in Interference

 $I_{i,k}^{C}=$ carry-in interference of task au_{i} on au_{k}

Carry-in and Non Carry-in Interference

 $I_{i,k}^{C}=$ carry-in interference of task au_{i} on au_{k}

 $\textit{I}^{\textit{NC}}_{\textit{i},\textit{k}} = ext{non carry-in interference} \ ext{of} \ \underset{\scriptscriptstyle{k}}{ ag{task}} \ ag{task} \ ag{tas$

The DA-LC test

• The DA-LC test (Davis et al. RTSJ 2011) for task τ_k is given as follows:

$$D_k \geq C_k + \left\lfloor \frac{I_k}{m} \right\rfloor$$

The DA-LC test

• The DA-LC test (Davis et al. RTSJ 2011) for task τ_k is given as follows:

$$D_k \geq C_k + \left\lfloor \frac{I_k}{m} \right\rfloor$$

• The function I_k is calculated as follows:

$$I_k = \sum_{i \in \mathit{hp}(k)} I_{i,k}^{\mathit{NC}} + \sum_{i \in \mathit{Max}(k,m-1)} I_{i,k}^{\mathit{DIFF}}$$

The DA-LC test

• The DA-LC test (Davis et al. RTSJ 2011) for task τ_k is given as follows:

$$D_k \geq C_k + \left\lfloor \frac{I_k}{m} \right\rfloor$$

• The function I_k is calculated as follows:

$$I_{k} = \sum_{i \in hp(k)} I_{i,k}^{NC} + \sum_{i \in Max(k,m-1)} I_{i,k}^{DIFF}$$

- where
 - ► Max(k, m-1) is the set of (m-1) higher priority tasks in hp(k) that have the largest value of $I_{i,k}^{DIFF}$, and

The DA-LC test

• The DA-LC test (Davis et al. RTSJ 2011) for task τ_k is given as follows:

$$D_k \geq C_k + \left\lfloor \frac{I_k}{m} \right\rfloor$$

• The function I_k is calculated as follows:

$$I_{k} = \sum_{i \in hp(k)} I_{i,k}^{NC} + \sum_{i \in Max(k,m-1)} I_{i,k}^{DIFF}$$

- where
 - ► Max(k, m-1) is the set of (m-1) higher priority tasks in hp(k) that have the largest value of $I_{i,k}^{DIFF}$, and
 - $I_{i,k}^{DIFF} = I_{i,k}^{C} I_{i,k}^{NC}$

The DA-LC test

- R. Davis and A. Burns (RTSJ, 2011) have showed that
 - Audsley's Optimal Priority Assignment(OPA) algorithm is applicable to the DA-LC test
 - Empirically shown that DA-LC+OPA outperforms all other existing test

OPA+DA-LC is the state-of-the-art iterative schedulability tests

Audsley's OPA for multiprocessors (RTSS, 2009)

Algorithm OPA (Taskset A, number of processors \hat{m} , Test S)

- 1. for each priority level *k*, lowest first
- 2. for each priority unassigned task $\tau \in A$
- 3. If τ is schedulable using S on \hat{m} processors at priority k
- 4. assign τ to priority k
- 5. break (continue outer loop)
- 6. return "unschedulable"
- 7. return "schedulable"

OPA+DA-LC (RTSJ, 2011)

Call OPA (Γ , m, DA-LC)

◆□▶◆□▶◆□▶◆□▶ □ め900

Our Observation @ ECRTS 2011

• OPA +DA-LC is proved optimal (RTSJ, 2011).

Our Observation @ ECRTS 2011

- OPA +DA-LC is proved optimal (RTSJ, 2011).
- This combination is optimal only under the assumption that it is applied to the entire task set and to all processors
 - i.e., Call OPA(Γ , m, DA-LC)

Our Observation @ ECRTS 2011

- OPA +DA-LC is proved optimal (RTSJ, 2011).
- This combination is optimal only under the assumption that it is applied to the entire task set and to all processors
 - i.e., Call OPA(Γ , m, DA-LC)

Scope for Improvement?

- Is it possible to obtain a more effective priority assignment if
 - ► OPA+DA-LC is applied to a subset of the entire task set and on a lower number of processors
 - while other tasks are assigned the highest priorities based on HPA and predictability?

Interesting Observation

• Recall the DA-LC test for task τ_k :

$$D_k \geq C_k + \left\lfloor \frac{I_k}{m} \right\rfloor$$

• I_k depends on (m-1) carry-in terms

$$I_k = \sum_{i \in \textit{hp}(k)} I_{i,k}^{\textit{NC}} + \sum_{i \in \textit{Max}(k,m-1)} I_{i,k}^{\textit{DIFF}}$$

Interesting Observation

ullet Recall the DA-LC test for task $au_{\it k}$:

$$D_k \geq C_k + \left| \frac{I_k}{m} \right|$$

• I_k depends on (m-1) carry-in terms

$$I_{k} = \sum_{i \in \mathit{hp}(k)} I_{i,k}^{\mathit{NC}} + \sum_{i \in \mathit{Max}(k,m-1)} I_{i,k}^{\mathit{DIFF}}$$

Observation

- If we remove one task, say τ_h , from hp(k) and
- reduce the number of processors from m to (m-1), and
- apply the OPA+DA-LC test on $(\Gamma \{\tau_h\})$ and on (m-1) processors,
- then I_k depends on (m-2) carry-in tasks in $(hp(k) \{\tau_h\})$

Example

- Consdier $\Gamma = \{\tau_1, \dots \tau_4\}$ and m = 3
- $(C_i, D_i, T_i) = \{(23, 33, 33), (106, 210, 214), (58, 216, 217), (46, 60, 64)\}$
- OPA (Γ , m=3, DA-LC) returns "unschedulable"
- I_3 considers (m-1)=2 as carry-in task

Example

- Consdier $\Gamma = \{\tau_1, \dots \tau_4\}$ and m = 3
- $(C_i, D_i, T_i) = \{(23, 33, 33), (106, 210, 214), (58, 216, 217), (46, 60, 64)\}$
- OPA (Γ , m=3, DA-LC) returns "unschedulable"
- I_3 considers (m-1)=2 as carry-in task
- The highest density (i.e., C_i/D_i) task τ_4 is given the highest priority
- OPA ($\{\tau_1, \tau_2, \tau_3\}$, m = 2, DA-LC) returns "schedulable"
- I_3 considers (m-1)=1 task as carry-in task

HPA+OPA +DA-LC

Algorithm HybridOPA (Γ , m)

- 1. **for** m' = 0 **to** (m-1)
- 2. remove m' highest desnity tasks from given task set Γ
- 3. if OPA (Γ , m-m', DA-LC) returns "schedulable" then
- 4. **return** "schedulable"
- 5. end for
- 6. return "unschedulable"

We call this test HP-DA-LC test

4□ > 4∰ > 4 분 > 4 분 > 1 분 90 < 0</p>

Task Splitting Algorithm

Task Splitting

Background

- Global and partitioned method cannot guarantee system utilization more than 50% for all task sets (Lecture 7)
 - —Partitioned scheduling has task assignment step.
 - —Task assignment to processors is generally done with a bin-packing algorithm.

Task Splitting

Background (cont.)

- A variation of partitioned scheduling using tasksplitting approach can achieve more than 50% system utilization for all task sets.
- History: task-splitting for static-priority were first proposed in July 2009 at CMU

Traditional Partitioned Scheduling

We assume Task 2, Task 1 and Task 3 be the ordering of the tasks to assign to the processors A and B.

Size of each task is proportional to the utilization of the task.

Traditional Partitioned Scheduling

Partition Fails!

Task 3 cannot be assigned to any processor because size of Task 3 is too large

Task-Splitting Partitioned Scheduling

Task-Splitting Partitioned Scheduling

Different subtasks of Task 3 can be assigned to different processors.

To construct the subtasks, we split Task 3.

Task-Splitting Partitioned Scheduling

Different subtasks of Task 3 can be assigned to different processors.

To construct the subtasks, we split Task 3.

Task-Splitting Partitioned Scheduling

Partition Success!

Challenges in Task-Splitting

- How to design the task assignment algorithm?
 - How many splits of each task?
 - How many tasks to split?
 - How to ensure that subtasks of a split task do not execute in parallel?
- How to find the guarantee bound for given task assignment algorithm?

Some Results on Task Splitting

- ECRTS 2009, CMU: Utilization bound 65%
 - Unsorted version: 60%
 - Number of split tasks is (m-1)
 - A task can be splitted in (m-1) parts
- IPDPS 2009, CHALMERS (Our Work):
 - Utilization bound 55.2%
 - Number of split tasks is m/2
 - A task can be splitted in at most 2 parts
- RTA 2010, UPPSALA
 - (Sorting) Utilization bound 69.3%
 - Number of split tasks is (m-1)
 - A task can be splitted in (m-1)parts

Dual-Priority Scheduling (uniprocessor)

Motivation for Dual-Priority

- RM is the optimal fixed-priority algorithm with guarantee bound 69.3%
 - Each task is assigned a fixed priority
- EDF is the optimal dynamic priority algorithm with guarantee bound 100%
 - Each job/instance has a fixed-priority,
 - Different instances of the same task may have different priority

Motivation for Dual-Priority

- In EDF, the instances of a task can have n differnt priorities
 - Sometime priority level 1, sometime priority level 2, ...
 Sometime priority level n
- In RM, all the instances of a task have exactly one unique priority
 - Problem: How can we introduce minimum dynamicpriority behaviour such that higher utilization bound is possible?

Dual-Priority Scheduling (EXAMPLE)

	С	Т	U
τ_{1}	3	6	50%
τ_2	2	8	25%
τ_3	3	12	25%

 Using RM scheduling on uniprocessor, the task set is not schedulable

τ _{1,1}			τ _{2,1}		τ _{3,1}	τ _{1,2}			τ _{2,2}		τ _{3,1}
1	2	3	4	5	6	7	8	9	10	11	12

• The first instant of τ_3 misses its deadline at t=12

Dual Priority Scheduling

• Where is the problem?

τ _{1,1}			τ _{2,1}		τ _{3,1}	τ _{1,2}			τ _{2,2}		τ _{3,1}
1	2	3	4	5	6	7	8	9	10	11	12

	C	T
τ_1	3	6
τ_2	2	8
τ_3	3	12

- The second instance of task τ_2 can be delayed to allow the first instance of task τ_3 to complete before deadline
- How to do it?
 - We can promote the priority of task τ_3 over other tasks at the beginning of time instant 11.

Dual Priority Scheduling

New Priority and Promotion Point

	С	Т		Non-Promoted Priority	Promoted Priority	When to promote?
τ_1	3	6	50%	2		
τ_2	2	8	25%	3		
τ_3	3	12	25%	4	1	11

Dual Priority Scheduling

- Research Questions (a potential MS thesis work):
 - What is the **priority ordering** before and after promotion?
 - Possibly RM priority: before (n+1, ... 2n) and after (1, ... n)
 - How the **promotion points** have to be calculated for each task?
 - **Heuristic:** Start with promotion point equal to the deadline and then decrease it if not successful.
 - OPEN PROBELM: Does dual-priority scheduling have 100% utilization bound?
 - We did a lot of simulation and get YES answer for all.

Mixed-Criticality Systems

Mixed-Criticality System

- An active research area in Cyber-physical systems
- Many safety-critical systems are considering integrating multiple functionalities on a single platform (multicore)
 - hosting functionalities with multiple criticality levels
- The design is often subjected to certification requirements by certification authority (CA)
 - e.g., FAA or EASA for avionics

The Challenge

- The certification authority (CA) is very pessimistic in comparison to the system designer
- The CA is only concerned about the correctness of the safety-critical part
- The system designer is concerned about the correctness of the *entire system*
- Challenge: Coming up with a scheduling strategy that satisfies both the CA and the system designer

Current Research on MC

- Consider a particular aspect of the run-time behavior of the system: the Worst-Case Execution Time (WCET) of pieces of code
- The CA assumes high value for WCET
- The system designer assumes relatively *lower* value for WCET

Example

- Consider uniprocessor system
- Fixed-priority scheduling
- Three jobs J1, J2, and J3
- All are released at time zero

Jobs	Critical?	WCET (CA)	WCET(Designer)	Deadline
J1	NO	-	1	2
J2	YES	1.5	1	3.5
J3	YES	1.5	1	3.5

Dual-Criticality Systems

Traditional Fixed-Priority Schedule

Jobs	Critical?	WCET (CA)	WCET(De signer)	Deadli ne
J1	NO	-	1	2
J2	YES	1.5	1	3.5
J3	YES	1.5	1	3.5

• If J1 is the highest priority task, then

one of J2 or J3 misses its deadline.

Traditional Fixed-Priority Schedule

Jobs	Critical?	WCET (CA)	WCET(De signer)	Deadli ne
J1	NO	-	1	2
J2	YES	1.5	1	3.5
J3	YES	1.5	1	3.5

• If J1 is the medium priority task, then

J3 misses its deadline

Traditional Fixed-Priority Schedule

Jobs	Critical?	WCET (CA)	WCET(Designer)	Deadline
J1	NO	-	1	2
J2	YES	1.5	1	3.5
J3	YES	1.5	1	3.5

If J1 is the lowest priority task, then

Job J1 misses its deadline even if both J2 and J3 executes for 1 time unit.

Traditional Fixed-Priority Schedule

Jobs	Critical?	WCET (CA)	WCET(De signer)	Deadli ne
J1	NO	-	1	2
J2	YES	1.5	1	3.5
J3	YES	1.5	1	3.5

- Job J2 and J3 are schedulable if they are given the highest two priority levels
 - But J1 misses its deadline even if J2 and J3 execute for only 1 time unit
- Traditional Fixed-priority scheduling is not suitable to satisfy both the system designer and the CA.

A New Scheduling Scheme

Jobs	Critical?	WCET (CA)	WCET(Designer)	Deadline
J1	NO	-	1	2
J2	YES	1.5	1	3.5
J3	YES	1.5	1	3.5

• Execute J2 over [0,1). If J2 completes by 1, then execute J1 and then J3

A New Scheduling Scheme

Jobs	Critical?	WCET (CA)	WCET(Designer)	Deadline
J1	NO	-	1	2
J2	YES	1.5	1	3.5
J3	YES	1.5	1	3.5

• If J2 does not complete by 1, then **drop** J2 and execute J2 over [1,1.5) and then J3 over [1.5,3).

A New Scheduling Scheme

Jobs	Critical?	WCET (CA)	WCET(Designer)	Deadline
J1	NO	-	1	2
J2	YES	1.5	1	3.5
J3	YES	1.5	1	3.5

 Priority Assignment: Assign the highest priority to J2, medium priority to J1 and the lowest priority to J3.

Dispatching:

- Execute J2 within [0,1).
- If J2 completes, then execute J1 within [1,2) and J3 within [2,3) or [2,3.5)
- If J2 does not complete, drop J1. Execute J2 for additional [1,1.5) and J2 within [1.5,3).

Mixed-Criticality Sporadic Tasks Scheduling on Multiprocessor

Each task is recurrent

Three parameters (WCET, Deadline, Period)

Priority assignment

— How to assign fixed-priorities to the tasks?

Schedulability analysis and test

— How can we guarantee in offline that a MC task set is schedulable (satisfies both CA and the designer)?

Multiple criticality levels

– How to deal with multiple criticality levels?

Conclusion

- There is a gap between 38% and 50% guarantee bound for global fixed-priority scheduling.
- The **optimal priority assignment** for global fixedpriority scheduling is still unknown.
- The maximum achievable guarantee bound for task-splitting with fixed-priority is not known.
- Dual-priority scheduling is very useful for industry, e.g, in CAN, if the **utilization bound** is 100%.
- Analysis for certifiable mixed-criticality systems on multiprocessors needs to be developed.