
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #4
Updated March 29, 2015

1

Parallel & Distributed
Real-Time Systems

Lecture #4

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Administrative issues

Lecture schedule:
•  No lecture on Friday, April 3, due to the holidays
•  Extra lecture on Thursday, April 2 @ 08:00

–  “Schedulability Analysis Techniques” (Dr Risat Pathan)

Homework assignments:
•  HWA #2 rescheduled

–  Handed out on May 8
–  Deadline on May 26

Schedule = resources + operations on a time line

Scheduling

Attempts to meet application constraints should be
done in a proactive way through scheduling.

1τ

2τ

t

Scheduling is used in many disciplines:
(a.k.a. ”operations research”)

•  Production pipelines (“Ford’s automotive assembly line”)
Actors: workers + car parts
Goal: generate schedules that maximizes system throughput
(cars per time unit)
Technique: job- and flow-shop scheduling

•  Real-time systems
Actors: processors, data structures, I/O hardware + tasks
Goal: generate schedules that meet timing constraints
(deadlines, periods, jitter)
Technique: priority-based task scheduling

Scheduling

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #4
Updated March 29, 2015

2

Scheduling is used in many disciplines:
(a.k.a. ”operations research”)

•  Classroom scheduling
Actors: classrooms, teachers, projectors + courses
Goal: generate periodic schedules within 7-week blocks
Technique: branch-and-bound algorithms

•  Airline crew scheduling
Actors: aircraft, staff + routes
Goal: generate periodic schedules that minimizes the number of
aircraft and staff used and fulfill union regulations for staff
Technique: advanced branch-and-bound algorithms

Scheduling Scheduling

•  A scheduling algorithm generates a schedule for a given
set of tasks and a certain type of run-time system.

•  The scheduling algorithm is implemented by a scheduler
that decides in which order the tasks should be executed.

•  Observe that the scheduler selects which task should be
executed next, while the dispatcher starts the execution of
the selected task.

scheduling

dispatching

preemption

task arrival task termination
execution

Scheduling

A schedule is said to be feasible if it fulfills all
application constraints for a given set of tasks.

A set of tasks is said to be schedulable if there
exists at least one scheduling algorithm that can
generate a feasible schedule.

Scheduling

A scheduling algorithm is said to be optimal with respect
to schedulability if it can always find a feasible schedule
whenever any other scheduling algorithm can do so.

A scheduling algorithm is said to be optimal with respect
to a performance metric if it can always find a schedule
that maximizes/minimizes that metric value.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #4
Updated March 29, 2015

3

Scheduling constraints

Examples of scheduling constraints:
•  No processor sharing:

–  A processor can only execute one task at a time
–  This is a realistic assumption for any processor type being

used in practice
–  Note: in case of multi-core processors, each core is viewed

as a separate processor

•  No dynamic task parallelism:
–  A task can only execute on one processor at a time
–  This is a realistic assumption for any programming model

being used in practice

Scheduling constraints

Examples of scheduling constraints:
•  Non-preemptive scheduling:

–  Once started, a task cannot be preempted by another task
–  This assumption is not so common in priority-based scheduling

•  Greedy scheduling:
–  Once started, a task cannot be preempted by a lower-priority task
–  This assumption applies for all run-time systems used in practice

•  No task migration:
–  A task can only execute on one given processor, or cannot

change processor once it has started its execution
–  This is a realistic assumption for distributed systems, and is also

enforced for some multi-core processor designs (e.g. AUTOSAR)

Scheduling constraints

Non-preemptive scheduling:
•  Advantages:

–  Mutual exclusion can be automatically guaranteed
–  Results from WCET analysis correspond well with real

WCET behavior

•  Disadvantages:
–  Negative effect on schedulability

•  Scheduling decision takes effect only after a task has
completed its execution

•  Once a task starts executing, all other tasks on the same
processor will be blocked until execution is complete

Scheduling constraints

Preemptive scheduling:
•  Advantages:

–  Schedulability is not negatively affected
•  Scheduling decisions can take effect as soon as the system state

changes (even in the middle of task execution)
•  The capacities of task priorities can be used in full

•  Disadvantages:
–  Mutual exclusion has to be guaranteed by e.g. semaphores (or

similar constructs)
–  WCET analysis is more complicated since cache and pipeline

contents will be affected by a task switch
–  Program security may be compromised (through so-called

covert channels) if full preemption is allowed

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #4
Updated March 29, 2015

4

Scheduling constraints

Greedy scheduling:
•  Example: ”traditional” static-priority scheduling (RM, DM)

–  Once a task starts executing, lower-priority tasks cannot grab
the processor until execution is complete

•  Advantages:
–  Scheduler relatively simple to implement
–  Supported by all run-time systems used in practice

•  Disadvantages:
–  Schedulability is negatively affected:

•  Lower-priority tasks can starve and hence miss their deadlines

Scheduling constraints

Fair scheduling:
•  Example: p-fair scheduling (Baruah et al. 1995)

–  Although a task has started executing, lower-priority tasks
receive a guaranteed time quantum per time unit for execution

–  All tasks hence make some kind of progress per time unit

•  Advantages:
–  Schedulability can be maximized on a multiprocessor system

(assuming that task switch cost is negligible)

•  Disadvantages:
–  Not supported by run-time systems used in practice
–  Poor schedulability when task switch cost is non-negligible

•  Fairness implies significantly more task switches than greediness

Scheduling algorithms

How much an oracle is the scheduling algorithm?
•  Myopic scheduler:

–  Scheduling algorithm only knows about currently ready tasks.
–  Scheduling decisions are only taken whenever a new task

instance arrives or a running task instance terminates.

•  Clairvoyant scheduler:
–  Scheduling algorithm ”knows the future”; that is, it knows in

advance the arrival times of the tasks.
–  On-line clairvoyant scheduling is difficult to realize in practice.

”Predictions are always hard to make. In particular about the future.”
(Yogi Berra)

Scheduling algorithms

When are schedules generated?
•  Static scheduling:

–  Schedule generated ”off-line” before the tasks becomes ready,
sometimes even before the system is in mission.

–  Schedule consists of a ”time table”, containing explicit start and
completion times for each task instance, that controls the order
of execution at run-time.

•  Dynamic scheduling:
–  Schedule generated ”on-line” as a side effect of tasks being

executed, that is, when the system is in mission.
–  Ready tasks are sorted in a queue and receive access to the

processor and shared resources at run-time using conflict-
resolving mechanisms.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #4
Updated March 29, 2015

5

Static scheduling

Off-line schedule generation:
•  Simulate dynamic scheduling

–  Record a run-time behavior (linear time complexity)

•  Apply a search heuristic (e.g., a branch-and-bound algorithm)
–  Find a feasible schedule (if one exists) by considering all

possible execution scenarios (NP-complete problem)

:
:

:

:
15 * i + 15 * i + 15 * i + 15 * i + t 0 5 10 15

1τ

2τ

3τ

4τ

Example:
Cyclic static schedule
with a hyper-period
(period LCM) of 15.

Dynamic scheduling

On-line schedule generation:
•  Mechanisms for resolving conflicts

–  Priorities possibly combined with time quanta
–  Feasibility of schedule must be checked off-line by making

predictions on how the conflicts are resolved at run-time

t 0 5 10 15

1τ

2τ

3τ

4τ

Example:
Schedule generated
with rate-monotonic
priority assignment

Dynamic scheduling

Rate-monotonic scheduling (RM):
•  Uses static priorities

–  Priority is determined by task frequency (rate)
–  Tasks with higher rates (i.e., shorter periods) are assigned

higher priorities

•  Theoretically well-established (for single-processor systems)
–  Sufficient schedulability test can be performed in linear time

(under certain simplifying assumptions)
–  Exact schedulability test is an NP-complete problem
–  RM is optimal among all scheduling algorithms that uses static

priorities under the assumption that Di = Ti for all tasks
 (shown by C. L. Liu & J. W. Layland in 1973)

Dynamic scheduling

Deadline-monotonic scheduling (DM):
•  Uses static priorities

–  Priority is determined by task deadline
–  Tasks with shorter (relative) deadlines are assigned higher

priorities
–  Note: RM is a special case of DM, with Di = Ti

•  Theoretically well-established (for single-processor systems)
–  Exact schedulability test is an NP-complete problem
–  DM is optimal among all scheduling algorithms that uses static

priorities under the assumption that Di ≤ Ti for all tasks
 (shown by J. Y.-T. Leung & J. Whitehead in 1982)

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #4
Updated March 29, 2015

6

Dynamic scheduling

Earliest-deadline-first scheduling (EDF):
•  Uses dynamic priorities

–  Priority is determined by how critical the process is at a given
time instant

–  The task whose absolute deadline is closest in time receives
the highest priority

•  Theoretically well-established (for single-processor systems)
–  Exact schedulability test can be performed in linear time

(under certain simplifying assumptions)
–  EDF is optimal among all scheduling algorithms that uses

dynamic priorities under the assumption that Di = Ti for all tasks
 (shown by C. L. Liu & J. W. Layland in 1973)

t

t 0 5 10 15 20 25

0 7 14 21 28

RM

1τ

2τ

Dynamic scheduling

Example: RM versus EDF
Missed deadline

t

t

0 5 10 15 20 25

0 7 14 21 28

EDF

1τ

2τ

1 1 1: (2, 5)C Tτ = =
2 1 1: (4, 7)C Tτ = =

Handling shared resources

When tasks are no longer independent (i.e., they access shared
software/hardware objects for which mutual exclusion is enforced)
the scheduler must be extended with special mechanisms.

t

t

1τ 2τ 3τ

 R1

 R1

 µ1

Handling shared resources

t1

H blocked

t2

Blocking time for H not bounded
by execution of critical region

t

t
H

t
M

normal execution

critical region

 priority (H) > priority (M) > priority (L)

L

H and L share mutex resource R

Priority inversion phenomenon:

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #4
Updated March 29, 2015

7

Handling shared resources

Resolving resource conflicts:
(while also avoiding priority/deadline inversion)

•  Off-line resource scheduling:
–  Intelligent algorithms that are configured to generate schedules

with no need for conflict resolution at run-time.
Examples: branch-and-bound (B&B) algorithms

•  On-line resource access protocols:
–  Blocking protocols using dynamic adjustments of task priorities.

Examples: Priority Inheritance Protocol, Deadline Inheritance Protocol,
Priority Ceiling Protocol, Immediate Ceiling Priority Protocol, Stack
Resource Policy

–  Non-blocking protocols using retry loops.
Examples: lock-free and wait-free object sharing

Priority Inheritance Protocol: (Sha, Rajkumar & Lehoczky, 1990)
•  Basic idea: When a task blocks one or more higher-

priority tasks, it temporarily assumes (inherits) the highest
priority of the blocked tasks.

Handling shared resources

iτ

•  Advantage:
–  Prevents medium-priority tasks from preempting and

prolonging the blocking duration experienced by
higher-priority tasks.

•  Disadvantage:
–  May deadlock: priority inheritance can cause deadlock
–  Chained blocking: the highest-priority task may be blocked

once by every other task executing on the same processor.

iτ

Priority Ceiling Protocol: (Sha, Rajkumar & Lehoczky, 1990)
•  Basic idea: Each resource is assigned a priority ceiling

equal to the priority of the highest-priority task that can lock
it. Then, a task is allowed to enter a critical region only if
its priority is higher than all priority ceilings of the resources
currently locked by tasks other than .
When the task blocks one or more higher-priority tasks, it
temporarily inherits the highest priority of the blocked tasks.

•  Advantage:
–  No deadlock: priority ceilings prevent deadlocks
–  No chained blocking: a task can be blocked at most the

duration of one critical region.

iτ

iτ
iτ

Handling shared resources Handling shared resources

R3 t

t
H

t
M

normal execution

critical region

 priority (H) > priority (M) > priority (L)

L

H sequentially accesses resources R1 and R2
M accesses resource R3

L accesses resource R3 and nests R2

Priority Ceiling Protocol:

R3 R2 R2 R3

R3

R1 R2

L inherits the priority of M
 M blocks on R3

ceiling blocking

H blocked because its priority
is not higher than ceiling for R2
L inherits the priority of H

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #4
Updated March 29, 2015

8

Distributed PCP: (Rajkumar, Sha & Lehoczky, 1988)
•  All critical regions associated with the same global resource

are bound to a specified synchronization processor.

•  A task ”migrates” to the synchronization processor to
execute the critical region (using remote-procedure calls)
–  Advantage: deadlock-free algorithm
–  Disadvantage: large overhead for message-passing protocol

•  All critical regions associated with the same global resource
are executed at a priority equal to the semaphore’s priority
ceiling
–  short blocking times

Handling shared resources

Lock-Free and Wait-Free Object Sharing:

Handling shared resources

If several tasks attempt to access a lock-free object concurrently,
and if a subset of these tasks stop taking steps, then one of the
remaining tasks completes its access in a finite number of steps.

If several tasks attempt to access a wait-free object concurrently,
and if a subset of these tasks stop taking steps, then each of the
remaining tasks complete their access in a finite number of steps.

Lock-Free Object Sharing: (Anderson et al., 1996)
•  Basic idea: The lock-free object sharing scheme is implemented

using ”retry loops”. Object accesses are implemented using test-
and-set or compare-and-swap instructions typically found in
modern RISC processors.

•  Advantage:
–  Resource accesses are non-blocking
–  Deadlock-free
–  Avoids priority inversion
–  Requires no kernel-level support

•  Disadvantage:
–  Potentially unbounded retry loops

Handling shared resources

Wait-Free Object Sharing: (Anderson et al., 1997)
•  Basic idea: The wait-free object sharing scheme is implemented

using a ”helping” strategy where one task ”helps” one or more
other tasks to complete an operation.
Before beginning an operation, a task must announce its
intentions in an ”announce variable”.
While attempting to perform its own operations, a task must also
help any previously-announced operation (on its processor) to
complete execution.

•  Advantage:
–  Non-blocking, deadlock-free, and priority-inversion-free
–  Requires no kernel-level support
–  Precludes waiting dependencies among tasks

Handling shared resources

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #4
Updated March 29, 2015

9

Non-existence of optimal on-line shared-resource
scheduler: (Mok, 1983)

Handling shared resources

Complexity of shared-resource feasibility test: (Mok, 1983)

When there are mutual exclusion constraints in a system,
it is impossible to find an optimal on-line scheduling

algorithm (unless it is clairvoyant).

The problem of deciding feasibility for a set of periodic tasks
which use semaphores to enforce mutual exclusion is NP-hard.

