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Parallel & Distributed 
Real-Time Systems 

Lecture #4 

Professor Jan Jonsson 

Department of Computer Science and Engineering 
Chalmers University of Technology 

Administrative issues 

Lecture schedule: 
•  No lecture on Friday, April 3, due to the holidays 
•  Extra lecture on Thursday, April 2 @ 08:00 

–  “Schedulability Analysis Techniques” (Dr Risat Pathan) 

Homework assignments: 
•  HWA #2 rescheduled 

–  Handed out on May 8 
–  Deadline on May 26 

Schedule = resources + operations on a time line 

Scheduling 

Attempts to meet application constraints should be 
done in a proactive way through scheduling. 

1τ

2τ

t 

Scheduling is used in many disciplines: 
(a.k.a. ”operations research”) 

•  Production pipelines (“Ford’s automotive assembly line”) 
Actors: workers + car parts 
Goal: generate schedules that maximizes system throughput 
(cars per time unit)  
Technique: job- and flow-shop scheduling 

•  Real-time systems 
Actors: processors, data structures, I/O hardware + tasks 
Goal: generate schedules that meet timing constraints 
(deadlines, periods, jitter) 
Technique: priority-based task scheduling 

Scheduling 



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015                 Lecture #4 
Updated March 29, 2015 

2 

Scheduling is used in many disciplines: 
(a.k.a. ”operations research”) 

•  Classroom scheduling 
Actors: classrooms, teachers, projectors + courses 
Goal: generate periodic schedules within 7-week blocks  
Technique: branch-and-bound algorithms 

•  Airline crew scheduling 
Actors: aircraft, staff + routes 
Goal: generate periodic schedules that minimizes the number of 
aircraft and staff used and fulfill union regulations for staff  
Technique: advanced branch-and-bound algorithms 

Scheduling Scheduling 

•  A scheduling algorithm generates a schedule for a given 
set of tasks and a certain type of run-time system. 

•  The scheduling algorithm is implemented by a scheduler 
that decides in which order the tasks should be executed. 

•  Observe that the scheduler selects which task should be 
executed next, while the dispatcher starts the execution of 
the selected task. 

scheduling 

dispatching 

preemption 

task arrival task termination 
execution 

Scheduling 

A schedule is said to be feasible if it fulfills all 
application constraints for a given set of tasks. 

A set of tasks is said to be schedulable if there 
exists at least one scheduling algorithm that can 
generate a feasible schedule. 

Scheduling 

A scheduling algorithm is said to be optimal with respect 
to schedulability if it can always find a feasible schedule 
whenever any other scheduling algorithm can do so. 

A scheduling algorithm is said to be optimal with respect 
to a performance metric if it can always find a schedule 
that maximizes/minimizes that metric value. 
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Scheduling constraints 

Examples of scheduling constraints: 
•  No processor sharing: 

–  A processor can only execute one task at a time 
–  This is a realistic assumption for any processor type being 

used in practice 
–  Note: in case of multi-core processors, each core is viewed 

as a separate processor 

•  No dynamic task parallelism: 
–  A task can only execute on one processor at a time 
–  This is a realistic assumption for any programming model 

being used in practice 

Scheduling constraints 

Examples of scheduling constraints: 
•  Non-preemptive scheduling: 

–  Once started, a task cannot be preempted by another task 
–  This assumption is not so common in priority-based scheduling 

•  Greedy scheduling: 
–  Once started, a task cannot be preempted by a lower-priority task 
–  This assumption applies for all run-time systems used in practice 

•  No task migration: 
–  A task can only execute on one given processor, or cannot  

change processor once it has started its execution 
–  This is a realistic assumption for distributed systems, and is also 

enforced for some multi-core processor designs (e.g. AUTOSAR) 

Scheduling constraints 

Non-preemptive scheduling: 
•  Advantages: 

–  Mutual exclusion can be automatically guaranteed 
–  Results from WCET analysis correspond well with real 

WCET behavior 

•  Disadvantages: 
–  Negative effect on schedulability 

•  Scheduling decision takes effect only after a task has 
completed its execution 

•  Once a task starts executing, all other tasks on the same 
processor will be blocked until execution is complete 

Scheduling constraints 

Preemptive scheduling: 
•  Advantages: 

–  Schedulability is not negatively affected 
•  Scheduling decisions can take effect as soon as the system state 

changes (even in the middle of task execution) 
•  The capacities of task priorities can be used in full 

•  Disadvantages: 
–  Mutual exclusion has to be guaranteed by e.g. semaphores (or 

similar constructs) 
–  WCET analysis is more complicated since cache and pipeline 

contents will be affected by a task switch 
–  Program security may be compromised (through so-called 

covert channels) if full preemption is allowed 
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Scheduling constraints 

Greedy scheduling: 
•  Example: ”traditional” static-priority scheduling (RM, DM) 

–  Once a task starts executing, lower-priority tasks cannot grab 
the processor until execution is complete 

•  Advantages: 
–  Scheduler relatively simple to implement 
–  Supported by all run-time systems used in practice 

•  Disadvantages: 
–  Schedulability is negatively affected: 

•  Lower-priority tasks can starve and hence miss their deadlines 

Scheduling constraints 

Fair scheduling: 
•  Example: p-fair scheduling (Baruah et al. 1995) 

–  Although a task has started executing, lower-priority tasks 
receive a guaranteed time quantum per time unit for execution 

–  All tasks hence make some kind of progress per time unit 

•  Advantages: 
–  Schedulability can be maximized on a multiprocessor system 

(assuming that task switch cost is negligible) 

•  Disadvantages: 
–  Not supported by run-time systems used in practice 
–  Poor schedulability when task switch cost is non-negligible 

•  Fairness implies significantly more task switches than greediness 

Scheduling algorithms 

How much an oracle is the scheduling algorithm? 
•  Myopic scheduler: 

–  Scheduling algorithm only knows about currently ready tasks. 
–  Scheduling decisions are only taken whenever a new task 

instance arrives or a running task instance terminates. 

•  Clairvoyant scheduler: 
–  Scheduling algorithm ”knows the future”; that is, it knows in 

advance the arrival times of the tasks. 
–  On-line clairvoyant scheduling is difficult to realize in practice. 

”Predictions are always hard to make. In particular about the future.” 
(Yogi Berra) 

Scheduling algorithms 

When are schedules generated? 
•  Static scheduling: 

–  Schedule generated ”off-line” before the tasks becomes ready, 
sometimes even before the system is in mission. 

–  Schedule consists of a ”time table”, containing explicit start and 
completion times for each task instance, that controls the order 
of execution at run-time. 

•  Dynamic scheduling: 
–  Schedule generated ”on-line” as a side effect of tasks being 

executed, that is, when the system is in mission. 
–  Ready tasks are sorted in a queue and receive access to the 

processor and shared resources at run-time using conflict-
resolving mechanisms. 
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Static scheduling 

Off-line schedule generation: 
•  Simulate dynamic scheduling 

–  Record a run-time behavior (linear time complexity) 

•  Apply a search heuristic (e.g., a branch-and-bound algorithm) 
–  Find a feasible schedule (if one exists) by considering all 

possible execution scenarios (NP-complete problem) 

: 
: 

: 

: 
15 * i + 15 * i + 15 * i + 15 * i + t 0 5 10 15 

1τ

2τ

3τ

4τ

Example: 
Cyclic static schedule  
with a hyper-period  
(period LCM) of 15. 

Dynamic scheduling 

On-line schedule generation: 
•  Mechanisms for resolving conflicts 

–  Priorities possibly combined with time quanta 
–  Feasibility of schedule must be checked off-line by making 

predictions on how the conflicts are resolved at run-time 

t 0 5 10 15 

1τ

2τ

3τ

4τ

Example: 
Schedule generated  
with rate-monotonic 
priority assignment 

Dynamic scheduling 

Rate-monotonic scheduling (RM): 
•  Uses static priorities 

–  Priority is determined by task frequency (rate) 
–  Tasks with higher rates (i.e., shorter periods) are assigned 

higher priorities 

•  Theoretically well-established (for single-processor systems) 
–  Sufficient schedulability test can be performed in linear time 

(under certain simplifying assumptions) 
–  Exact schedulability test is an NP-complete problem 
–  RM is optimal among all scheduling algorithms that uses static 

priorities under the assumption that Di = Ti for all tasks 
 (shown by C. L. Liu & J. W. Layland in 1973) 

Dynamic scheduling 

Deadline-monotonic scheduling (DM): 
•  Uses static priorities 

–  Priority is determined by task deadline 
–  Tasks with shorter (relative) deadlines are assigned higher 

priorities 
–  Note: RM is a special case of DM, with Di = Ti  

•  Theoretically well-established (for single-processor systems) 
–  Exact schedulability test is an NP-complete problem 
–  DM is optimal among all scheduling algorithms that uses static 

priorities under the assumption that Di ≤ Ti for all tasks 
 (shown by J. Y.-T. Leung & J. Whitehead in 1982) 
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Dynamic scheduling 

Earliest-deadline-first scheduling (EDF): 
•  Uses dynamic priorities 

–  Priority is determined by how critical the process is at a given 
time instant 

–  The task whose absolute deadline is closest in time receives 
the highest priority 

•  Theoretically well-established (for single-processor systems) 
–  Exact schedulability test can be performed in linear time 

(under certain simplifying assumptions) 
–  EDF is optimal among all scheduling algorithms that uses 

dynamic priorities under the assumption that Di = Ti for all tasks 
 (shown by C. L. Liu & J. W. Layland in 1973) 

t 

t 0 5 10 15 20 25 

0 7 14 21 28 

RM 

1τ

2τ

Dynamic scheduling 

Example: RM versus EDF 
Missed deadline 

t 

t 

0 5 10 15 20 25 

0 7 14 21 28 

EDF 

1τ

2τ

1 1 1: ( 2, 5)C Tτ = =
2 1 1: ( 4, 7)C Tτ = =

Handling shared resources 

When tasks are no longer independent (i.e., they access shared 
software/hardware objects for which mutual exclusion is enforced) 
the scheduler must be extended with special mechanisms. 

t 

t 

1τ 2τ 3τ

  R1

  R1

 µ1

Handling shared resources 

t1 

H blocked 

t2 

Blocking time for H not bounded 
by execution of critical region 

t 

t 
H 

t 
M 

normal execution 

critical region 

 priority (H) > priority (M) > priority (L)  

L 

H and L share mutex resource R  

Priority inversion phenomenon: 



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015                 Lecture #4 
Updated March 29, 2015 

7 

Handling shared resources 

Resolving resource conflicts:  
(while also avoiding priority/deadline inversion) 

•  Off-line resource scheduling: 
–  Intelligent algorithms that are configured to generate schedules 

with no need for conflict resolution at run-time. 
Examples: branch-and-bound (B&B) algorithms 

•  On-line resource access protocols: 
–  Blocking protocols using dynamic adjustments of task priorities. 

Examples: Priority Inheritance Protocol, Deadline Inheritance Protocol, 
Priority Ceiling Protocol, Immediate Ceiling Priority Protocol, Stack 
Resource Policy 

–  Non-blocking protocols using retry loops. 
Examples: lock-free and wait-free object sharing 

Priority Inheritance Protocol: (Sha, Rajkumar & Lehoczky, 1990) 
•  Basic idea: When a task    blocks one or more higher-

priority tasks, it temporarily assumes (inherits) the highest 
priority of the blocked tasks. 

Handling shared resources 

iτ

•  Advantage: 
–  Prevents medium-priority tasks from preempting    and 

prolonging the blocking duration experienced by  
higher-priority tasks. 

•  Disadvantage: 
–  May deadlock: priority inheritance can cause deadlock 
–  Chained blocking: the highest-priority task may be blocked  

once by every other task executing on the same processor. 

iτ

Priority Ceiling Protocol: (Sha, Rajkumar & Lehoczky, 1990) 
•  Basic idea: Each resource is assigned a priority ceiling 

equal to the priority of the highest-priority task that can lock 
it. Then, a task    is allowed to enter a critical region only if 
its priority is higher than all priority ceilings of the resources 
currently locked by tasks other than   . 
When the task    blocks one or more higher-priority tasks, it 
temporarily inherits the highest priority of the blocked tasks. 

•  Advantage: 
–  No deadlock: priority ceilings prevent deadlocks 
–  No chained blocking: a task can be blocked at most the  

duration of one critical region. 

iτ

iτ
iτ

Handling shared resources Handling shared resources 

R3 t 

t 
H 

t 
M 

normal execution 

critical region 

 priority (H) > priority (M) > priority (L)  

L 

H sequentially accesses resources R1 and R2 
M accesses resource R3 

L accesses resource R3 and nests R2   

Priority Ceiling Protocol: 

R3 R2 R2 R3 

R3 

R1 R2 

L inherits the priority of M  
 M blocks on R3  

ceiling blocking 

H blocked because its priority 
is not higher than ceiling for R2  
L inherits the priority of H    
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Distributed PCP: (Rajkumar, Sha & Lehoczky, 1988) 
•  All critical regions associated with the same global resource 

are bound to a specified synchronization processor. 

•  A task ”migrates” to the synchronization processor to 
execute the critical region (using remote-procedure calls) 
–  Advantage: deadlock-free algorithm 
–  Disadvantage: large overhead for message-passing protocol 

•  All critical regions associated with the same global resource 
are executed at a priority equal to the semaphore’s priority 
ceiling 
–  short blocking times 

Handling shared resources 

Lock-Free and Wait-Free Object Sharing: 

Handling shared resources 

If several tasks attempt to access a lock-free object concurrently, 
and if a subset of these tasks stop taking steps, then one of the 
remaining tasks completes its access in a finite number of steps. 

If several tasks attempt to access a wait-free object concurrently, 
and if a subset of these tasks stop taking steps, then each of the 
remaining tasks complete their access in a finite number of steps.  

Lock-Free Object Sharing: (Anderson et al., 1996) 
•  Basic idea: The lock-free object sharing scheme is implemented 

using ”retry loops”. Object accesses are implemented using test-
and-set or compare-and-swap instructions typically found in 
modern RISC processors. 

•  Advantage: 
–  Resource accesses are non-blocking 
–  Deadlock-free 
–  Avoids priority inversion 
–  Requires no kernel-level support 

•  Disadvantage: 
–  Potentially unbounded retry loops 

Handling shared resources 

Wait-Free Object Sharing: (Anderson et al., 1997) 
•  Basic idea: The wait-free object sharing scheme is implemented 

using a ”helping” strategy where one task ”helps” one or more 
other tasks to complete an operation.  
Before beginning an operation, a task must announce its 
intentions in an ”announce variable”.  
While attempting to perform its own operations, a task must also 
help any previously-announced operation (on its processor) to 
complete execution. 

•  Advantage: 
–  Non-blocking, deadlock-free, and priority-inversion-free 
–  Requires no kernel-level support 
–  Precludes waiting dependencies among tasks 

Handling shared resources 
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Non-existence of optimal on-line shared-resource 
scheduler: (Mok, 1983) 

Handling shared resources 

Complexity of shared-resource feasibility test: (Mok, 1983) 

When there are mutual exclusion constraints in a system,  
it is impossible to find an optimal on-line scheduling 

algorithm (unless it is clairvoyant).  

The problem of deciding feasibility for a set of periodic tasks 
which use semaphores to enforce mutual exclusion is NP-hard.  


