

EVENENCE
 WINDERSITY OF GOTHENBURG

 Addministrative issues

 Homework assignments: (HWAs)

 Two assignments (handed out on Apr 24 and May 11)

 Problem solving + paper reading (18-day deadlines)

 Written report (computer generated, electronically submitted)

 Presentation (summarize, and argue for, proposed solutions)

 Examination:

 Compulsory homework assignments (report + presentation)

 Voluntary written exam (to enable highest grade)

 HWA grades: Failed, 3, 4, 5

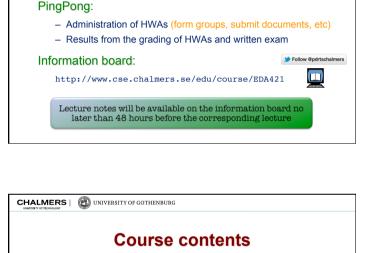
 Final grade: average of two HWA results

 Successful examination = 7.5 credit points

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Updated March 22, 2015

CHALMERS WIVERSITY OF GOTHENBURG COURSE literature Lecture notes: - Copies of PowerPoint presentations - Whiteboard scribble

Complementary reading:


- Selected research articles from archival journals and conference proceedings
- Selected chapters from C. M. Krishna and K. G. Shin, "Real-Time Systems", McGraw-Hill, 1997 (+ errata list!)

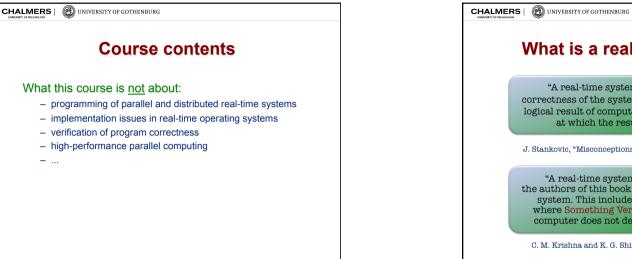
Course aim

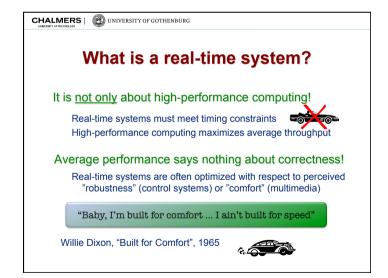
After the course, the student should be able to:

- Formulate requirements for computer systems used in timeand safety critical applications.
- Master the terminology of scheduling and complexity theory.
- Describe the principles and mechanisms used for scheduling of task execution and data communication in real-time systems.
- Derive performance for, and be familiar with the theoretical performance limitations of, a given real-time system.

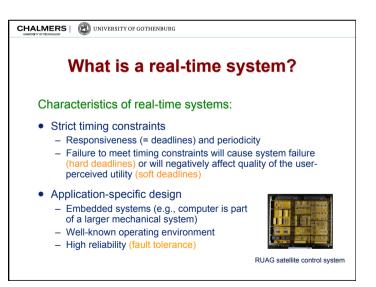
Resources

What this course is all about:

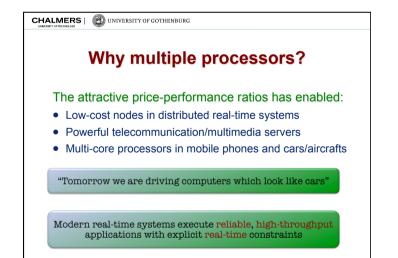

- real-time systems modeling
- real-time application constraints
- real-time performance measures
- real-time task assignment and scheduling algorithms
- real-time inter-processor communication techniques
- complexity theory and NP-completeness
- distributed clock synchronization
- fault-tolerance techniques for real-time systems
- estimation of program run times

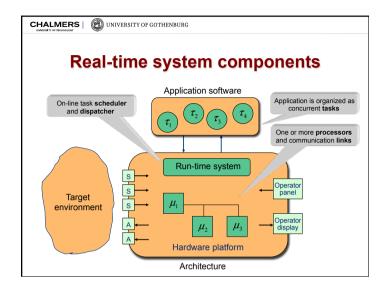

CHALMERS | WIVERSITY OF GOTHENBURG

Consultation sessions:


- In room ES52 (according to schedule)

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Updated March 22, 2015


CHALMER UNIVERSITY OF TECHNOLO	CHALMERS 🛞 UNIVERSITY OF GOTHENBURG	
	What is a real-time system?	
	"A real-time system is one in which the correctness of the system depends not only on the logical result of computation, but also on the time at which the results are generated"	
	J. Stankovic, "Misconceptions of Real-Time Computing", 1988	
	"A real-time system is anything that we, the authors of this book, consider to be a real-time system. This includes embedded systems where Something Very Bad will happen if the computer does not deliver its output in time"	
	C. M. Krishna and K. G. Shin, "Real-Time Systems", 1997	

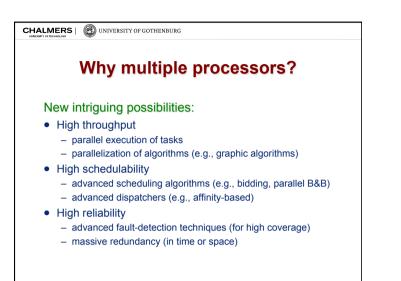


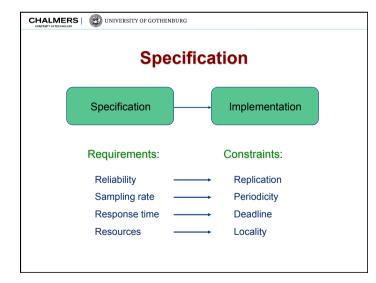
Lecture #1

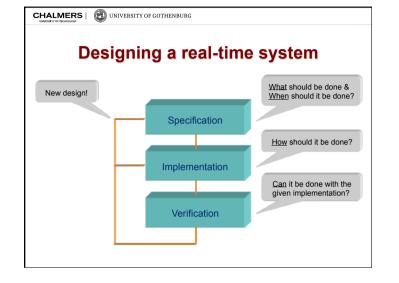
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #1 Updated March 22, 2015

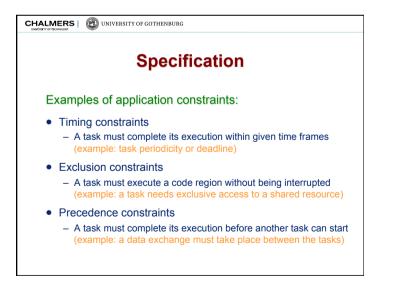
CHALMERS | OUNIVERSITY OF GOTHENBURG

Why multiple processors?


Distributed data processing:


- Locality constraints
 - data processing must take place close to sensor or actuator (e.g., robots, cars, aircraft)
- Reliability constraints
 - replication of computing resources provides fault-tolerance


Push-pull effect:


- New applications push future computer performance
- New computer platforms pull new applications

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #1 Updated March 22, 2015

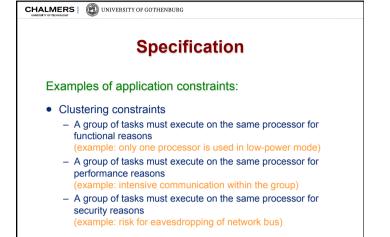
6

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Updated March 22, 2015

 CHARMERS
 INTRESETY OF GOTHENBURG

 Specification
 Specification

 Examples of application constraints:
 Examples of application constraints:

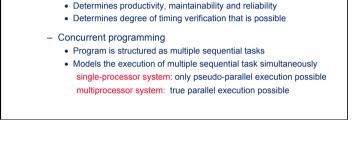

 Image: Constraints
 Examples of the second of the sec

CHALMERS INIVERSITY OF GOTHENBURG Specification Where do the timing constraints come from? • Laws of nature • Bodies in motion: arm movements in a robotic system • Inertia of the eye: minimal frame rate in film • Mathematical theory • Control theory: recommended sampling rate • Component limitations • Sensors and actuators: minimal time between operations • Artificial derivation

(example: parallelization)

 Observable events: certain (global) timing constraints are given, but individual (local) timing constraints are needed

Lecture #1


Single failures to fulfill a timing constraint are acceptable, but the usefulness of the result decreases the more failures there are.

Statistical guarantees often suffice for these systems!

7

· Determines processor and network utilization

Implementation

Critical choices to be made at design time:

· Determines run-time performance and code size

(B) UNIVERSITY OF GOTHENBURG

· Application software:

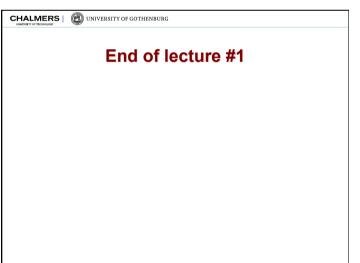
- Programming language

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015

Updated March 22, 2015

CHALMERS

Implementation


Critical choices to be made at design time:

• Hardware architecture:

Lecture #1

CHALMERS | WIVERSITY OF GOTHENBURG

- Single or multiprocessor architecture
 - Determines degree of true parallelism that can be exploited
- Microprocessor family
 - RISC processor (pipelines, caches, support for multiprocessors)
 - Micro-controller (no, or very simple, pipelines/caches)
 - Determines cost and run-time performance
 - Determines difficulty in worst-case execution time (WCET) analysis
- Communication network technology and topology
 - Determines cost, performance and reliability

