
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #1
Updated March 22, 2015

1

Parallel & Distributed
Real-Time Systems

7.5 credit points

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Administrative issues

Lectures: (Jan Jonsson, Risat Pathan + special guests)
–  Fundamental methods and theory

•  Real-time systems, scheduling, complexity theory

–  16 classroom lectures
•  Mondays at 13:15 – 15:00 in room EL52 (week 1 – 8)
•  Thursday at 08:00 – 09:45 in room EL52 (week 2 only)
•  Thursdays at 10:00 – 11:45 in room EL52 (week 1, 2, 3, 4 and 7)
•  Fridays at 15:15 – 17:00 in room EL52 (week 1 and 8)

Administrative issues

Consultation sessions: (Behrooz Sangchoolie)
–  Questions and guidance regarding homework assignments

–  Seven consultation sessions
•  Thursdays at 08:00 – 09:45 in lecture room ES52 (week 4, 5 and 7)
•  Thursdays at 10:00 – 11:45 in lecture room ES52 (week 5 and 8)
•  Fridays at 15:15 – 17:00 in lecture room ES52 (week 3 and 7)

  Starts week that first homework assignment is handed out

Administrative issues

Homework assignments: (HWAs)
–  Two assignments (handed out on Apr 24 and May 11)
–  Problem solving + paper reading (18-day deadlines)
–  Written report (computer generated, electronically submitted)
–  Presentation (summarize, and argue for, proposed solutions)

Examination:
–  Compulsory homework assignments (report + presentation)
–  Voluntary written exam (to enable highest grade)
–  HWA grades: Failed, 3, 4, 5
–  Final grade: average of two HWA results
–  Successful examination ⇒ 7.5 credit points

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #1
Updated March 22, 2015

2

Course literature

Lecture notes:
–  Copies of PowerPoint presentations
–  Whiteboard scribble

Complementary reading:
–  Selected research articles from archival journals and

conference proceedings
–  Selected chapters from C. M. Krishna and K. G. Shin,

“Real-Time Systems”, McGraw-Hill, 1997 (+ errata list!)

Resources

Consultation sessions:
–  In room ES52 (according to schedule)

PingPong:
–  Administration of HWAs (form groups, submit documents, etc)
–  Results from the grading of HWAs and written exam

Information board:
http://www.cse.chalmers.se/edu/course/EDA421!

Course aim

After the course, the student should be able to:
•  Formulate requirements for computer systems used in time-

and safety critical applications.

•  Master the terminology of scheduling and complexity theory.

•  Describe the principles and mechanisms used for scheduling
of task execution and data communication in real-time
systems.

•  Derive performance for, and be familiar with the theoretical
performance limitations of, a given real-time system.

Course contents

What this course is all about:
–  real-time systems modeling
–  real-time application constraints
–  real-time performance measures
–  real-time task assignment and scheduling algorithms
–  real-time inter-processor communication techniques
–  complexity theory and NP-completeness

–  distributed clock synchronization
–  fault-tolerance techniques for real-time systems
–  estimation of program run times

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #1
Updated March 22, 2015

3

Course contents

What this course is not about:
–  programming of parallel and distributed real-time systems
–  implementation issues in real-time operating systems
–  verification of program correctness
–  high-performance parallel computing
–  ...

What is a real-time system?

J. Stankovic, “Misconceptions of Real-Time Computing”, 1988

C. M. Krishna and K. G. Shin, “Real-Time Systems”, 1997

What is a real-time system?

It is not only about high-performance computing!

Real-time systems must meet timing constraints
High-performance computing maximizes average throughput

Average performance says nothing about correctness!
Real-time systems are often optimized with respect to perceived

”robustness” (control systems) or ”comfort” (multimedia)

Willie Dixon, “Built for Comfort”, 1965

What is a real-time system?

Characteristics of real-time systems:

•  Strict timing constraints
–  Responsiveness (= deadlines) and periodicity
–  Failure to meet timing constraints will cause system failure

(hard deadlines) or will negatively affect quality of the user-
perceived utility (soft deadlines)

•  Application-specific design
–  Embedded systems (e.g., computer is part

of a larger mechanical system)
–  Well-known operating environment
–  High reliability (fault tolerance)

RUAG satellite control system

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #1
Updated March 22, 2015

4

What is a real-time system?

Examples of real-time systems:

 Control systems
–  Industrial robots
–  Cars, aircrafts, submarines, satellites
–  Failure to meet timing constraints may cause major

physical/economical damage or even loss of life

 Multimedia systems
–  Portable music players, streaming music
–  Computer games; video-on-demand, virtual reality
–  Failure to meet timing constraints will degrade

user-perceived quality

Real-time system components

Target
environment

Architecture

 Application is organized as
concurrent tasks

Application software

1τ
2τ

3τ 4τ

Hardware platform

Run-time system
S

S

S

A

A

Operator
panel

Operator
display

1µ

2µ 3µ

 On-line task scheduler
and dispatcher

One or more processors
and communication links

Why multiple processors?

The attractive price-performance ratios has enabled:
•  Low-cost nodes in distributed real-time systems
•  Powerful telecommunication/multimedia servers
•  Multi-core processors in mobile phones and cars/aircrafts

Why multiple processors?

Distributed data processing:
•  Locality constraints

–  data processing must take place close to sensor or actuator
(e.g., robots, cars, aircraft)

•  Reliability constraints
–  replication of computing resources provides fault-tolerance

Push-pull effect:
•  New applications push future computer performance
•  New computer platforms pull new applications

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #1
Updated March 22, 2015

5

Why multiple processors?

New intriguing possibilities:
•  High throughput

–  parallel execution of tasks
–  parallelization of algorithms (e.g., graphic algorithms)

•  High schedulability
–  advanced scheduling algorithms (e.g., bidding, parallel B&B)
–  advanced dispatchers (e.g., affinity-based)

•  High reliability
–  advanced fault-detection techniques (for high coverage)
–  massive redundancy (in time or space)

Designing a real-time system

Verification

Implementation

Specification

 How should it be done?

 What should be done &
 When should it be done?

 Can it be done with the
given implementation?

New design!

Specification

Reliability

Sampling rate

Response time

Resources

Requirements: Constraints:

Replication

Periodicity

Deadline

Locality

Specification Implementation

Specification

Examples of application constraints:

•  Timing constraints
–  A task must complete its execution within given time frames

(example: task periodicity or deadline)

•  Exclusion constraints
–  A task must execute a code region without being interrupted

(example: a task needs exclusive access to a shared resource)

•  Precedence constraints
–  A task must complete its execution before another task can start

(example: a data exchange must take place between the tasks)

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #1
Updated March 22, 2015

6

Specification

Examples of application constraints:

•  Locality constraints
–  A task must execute on a specific processor because of the

vicinity to some resource (DSP chip, sensor, actuator)

•  Anti-clustering constraints
–  Identical copies of a task must execute on different processors for

reliability reasons (a.k.a. spatial replication)
(example: fault tolerance)

–  A group of tasks must execute on different processors for
performance reasons
(example: parallelization)

Specification

Examples of application constraints:

•  Clustering constraints
–  A group of tasks must execute on the same processor for

functional reasons
(example: only one processor is used in low-power mode)

–  A group of tasks must execute on the same processor for
performance reasons
(example: intensive communication within the group)

–  A group of tasks must execute on the same processor for
security reasons
(example: risk for eavesdropping of network bus)

Specification

Where do the timing constraints come from?

•  Laws of nature
–  Bodies in motion: arm movements in a robotic system
–  Inertia of the eye: minimal frame rate in film

•  Mathematical theory
–  Control theory: recommended sampling rate

•  Component limitations
–  Sensors and actuators: minimal time between operations

•  Artificial derivation
–  Observable events: certain (global) timing constraints are

given, but individual (local) timing constraints are needed

Specification

How critical are the constraints?
 Hard constraints:

 If the system fails to fulfill a timing constraint,
the computational results is useless.

 Correctness must be verified before system is put in mission!

 Soft constraints:

 Single failures to fulfill a timing constraint are
acceptable, but the usefulness of the result
decreases the more failures there are.

 Statistical guarantees often suffice for these systems!

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #1
Updated March 22, 2015

7

Implementation

Critical choices to be made at design time:
•  Application software:

–  Programming language
•  Determines run-time performance and code size
•  Determines productivity, maintainability and reliability
•  Determines degree of timing verification that is possible

–  Concurrent programming
•  Program is structured as multiple sequential tasks
•  Models the execution of multiple sequential task simultaneously
 single-processor system: only pseudo-parallel execution possible
 multiprocessor system: true parallel execution possible

Implementation

Critical choices to be made at design time:
•  Hardware architecture:

–  Single or multiprocessor architecture
•  Determines degree of true parallelism that can be exploited

–  Microprocessor family
•  RISC processor (pipelines, caches, support for multiprocessors)
•  Micro-controller (no, or very simple, pipelines/caches)
•  Determines cost and run-time performance
•  Determines difficulty in worst-case execution time (WCET) analysis

–  Communication network technology and topology
•  Determines cost, performance and reliability

Implementation

Critical choices to be made at design time:
•  Run-time system:

–  System services
•  Operating system (real-time kernel with system calls)
•  Stand-alone system (linked library with subroutine calls)
•  Determines run-time performance and code size
•  Determines cost, flexibility and portability

–  Task and message dispatching model
•  Time vs. priority driven dispatching
•  Preemptive vs. non-preemptive dispatching
•  Determines potential of meeting timing constraints
•  Determines processor and network utilization

End of lecture #1

