
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #2
Updated March 24, 2015

1

Parallel & Distributed
Real-Time Systems

Lecture #2

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Designing a real-time system

Verification

Implementation

Specification

 How should it be done?

 What should be done &
 When should it be done?

 Can it be done with the
given implementation?

New design!

Verification

Since timeliness is such an important characteristic of a
real-time system: how do we verify that the timing
constraints are met for a given system implementation?

… so we don’t miss that
hard deadline … … so we don’t miss too

many soft deadlines … … while we at the same time
avoid analyzing all possible
software execution scenarios

Verification

What is needed for formal verification?

•  A good timing model
Enables expressing the timing properties of the application in a
syntactically unambiguous way
Enables timing constraints to be reflected at all design levels: from
specification level (end-to-end constraints) to implementation level

•  A good schedulability analysis
Enables prediction of required processing capacity, e.g. # and
speed of processors, of the hardware (when software is known)
Enables prediction of required resource usage from the software
(when hardware implementation is known)

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #2
Updated March 24, 2015

2

Verification

What sources of uncertainty exist in formal verification?

•  Non-determinism in tasks’ WCET (undisturbed execution)
–  Input data and internal state controls execution paths
–  Memory access patterns control delays in processor

architecture (pipelines and cache memories)

•  Non-determinism in tasks’ execution interference
(pseudo-parallel execution)
–  Run-time execution model controls interference pattern

•  Conflicts in tasks’ demands for shared resources
–  (Pseudo-)parallel task execution may give rise to uncontrolled

blocking of shared hardware and software resources

Verification

How do we simplify formal verification?

•  Concurrent and reactive programming paradigm
–  Suitable schedulable unit of concurrency (task, thread, …)
–  Language constructs for expressing application constraints

for schedulable unit (priorities, delays, …)
–  WCET must be derivable for schedulable unit (special caution

with usage of dynamic language constructs)

•  Deterministic task execution
–  Time tables or static/dynamic task priorities
–  Preemptive task execution
–  Run-time protocols for access to shared resources (dynamic

priority adjustment and non-preemptable code sections)

Verification

How do we perform schedulability analysis?

•  Introduce abstract models of system components:
–  Task model (computation requirements, timing constraints)
–  Processor model (resource capacities)
–  Run-time model (task states, dispatching)

•  Predict whether task executions will meet constraints
–  Use abstract system models
–  Make sure that computation requirements never exceed

resource capacities
–  Generate (partly or completely) run-time schedule resulting

from task executions and detect worst-case scenarios

Task model

void task1(Object *self, int p) {
 Action1();
 SEND(Period1, Deadline1, self, task1, p);

}

void task2(Object *self, int p) {
 Action2();
 SEND(Period2, Deadline2, self, task2, p);

}

void kickoff(Object *self, int p) {

 AFTER(Offset1, &app1, p);
 AFTER(Offset2, &app2, p);

}

main() {

 TINYTIMBER(&app_main, kickoff, 0);
}

Implementation Abstract model

1τ

2τ

{ }1 1 1 1 1, , ,C T D Oτ =

{ }2 2 2 2 2, , ,C T D Oτ =

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #2
Updated March 24, 2015

3

Task model

The task model expresses the timing behavior of a task:
•  The static parameters describe characteristics of a task

that apply independent of other tasks.
–  Derived from the specification or implementation of the system
–  For example: period, deadline, WCET

•  The dynamic parameters describe effects that occur
during the execution of the task.
–  Is a function of the run-time system and the characteristics

of other tasks
–  For example: start time, completion time, response time

Task model

Static task parameters:

τ i = Ci ,Ti , Di ,Oi{ }iτ

t 0

 Di

 Ci

 Oi Ti

 Ci :(undisturbed) WCET

:iT period

 Di :(relative) deadline

 Oi :(absolute) time offset

Task model

Dynamic task parameters:

τ i = Ci ,Ti , Di ,Oi{ }iτ

si,k : start time of kth instance

fi,k : completion time of kth instance

Ri,k : response time of kth instance

ai,k : arrival time of kth instance

τ i,k : the kth instance of τ i

fi,k

si,k

ai,k

Ri,k

,1iτ ,2iτ ,3iτ

Ri = max

τ i ∈T,k≥1
Ri,k{ }

ai,k = Oi + (k −1) ⋅Ti

Ri,k = fi,k − ai,k

(worst-case response time)

0 t

Task model

Different types of tasks:
•  Periodic tasks

–  A periodic task arrives with a time interval Ti

•  Sporadic tasks
–  A sporadic task arrives with a time interval ≥ Ti

•  Aperiodic tasks
–  An aperiodic task has no guaranteed minimum time between

two subsequent arrivals

⇒  A priori schedulable real-time systems can only contain
periodic and sporadic tasks.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #2
Updated March 24, 2015

4

Processor model

Homogeneous processors:
•  Identical processors

–  WCET is a constant

Heterogeneous processors:
•  Uniform processors

–  WCET is the product of a basic execution time and a
scaling factor

•  Unrelated processors
–  WCET is not related for different processors

Run-time model

Task states:
•  Waiting

–  Task has not yet arrived for the first time, or has finished
executing but not re-arrived

•  Ready
–  Task has arrived and can potentially execute on the processor

(kept waiting in a ready queue)

•  Running
–  Task is currently executing on the processor

Dispatcher:
•  A run-time mechanism that takes the first element (task)

in the ready queue and executes it on the processor.

Is this a good schedule?

Evaluating a real-time system

An important part of real-time system design is to
have techniques that generate good schedules.

1τ

2τ

t 5 10 15 20 25 0

What do we need to decide the quality?

Evaluating a real-time system

How do we measure and compare performance?
•  Quantify system performance

–  Choose useful performance measures (metrics)

•  Perform objective performance analysis
–  Choose suitable evaluation methodology
–  Examples: theoretical and/or experimental analysis

•  Compare performance of different designs
–  Make trade-off analysis using chosen performance measures

•  Identify fundamental performance limitations
–  Find “bottleneck” mechanisms that affect performance

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #2
Updated March 24, 2015

5

Performance measures

Why do we need it?
•  To objective evaluate different design solutions and

choose the “best” one

•  To rubberstamp a system with performance potential
or quality guarantees (cf. “Intel inside”, “ISO 9000”)

“Yardsticks” by which the performance of a
system is expressed.

Performance measures

What is required by a performance measure?
•  Must be concise to avoid ambiguity

–  preferably a single number
•  use a weighted sum of constituent local performance measures

–  should reflect user-perceived utility
•  no artificial measures should be used

–  some measures are contradictory
•  processing speed vs. power consumption in a handheld computer

–  some measures are misleading
•  MIPS (million instructions executed per second)

Performance measures

What is required by a performance measure?
•  Must provide efficient coding of information

–  determine relevance of individual pieces

•  Must provide objective basis for ranking
–  use same set of applications for evaluations

•  Must provide objective optimization criteria for design
–  identify application-sensitive criteria

•  Must provide verifiable facts
–  use measures that can be derived for a real system

Performance measures

Traditional performance measures:

 Throughput
 Average # of operations/data processed by system per time unit

 Reliability
 Probability that system will not fail in a given time interval

 Availability
 Fraction of time for which system is up (providing service)

These measures do not take deadlines into account!

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #2
Updated March 24, 2015

6

Performance measures

Suitable real-time performance measures:
 Laxity

 Amount of time that the start of a task can be delayed without
it missing its deadline (calculated before scheduling)

X = min

τ i ∈T Di − Ci{ }

 Lateness
 Amount of time by which a task completes after its deadline
(calculated after scheduling)

L = max

τ i ∈T Ri − Di{ }

 Successful tasks
 Number of tasks that complete on or before their deadline
(calculated after scheduling)

Nsuccess = τ i ∈T : Ri − Di ≤ 0{ }

 Jitter
 Amount of deviation from expected periodicity of a task’s completion
(calculated after scheduling)

Joutput = max

τ i ∈T,k≥1 fi,k+1 − fi,k() − Ti{ }

Performance measures

Cost function – a general real-time performance measure

 Cumulative value:
 Value associated with a task as a function of its completion time

()
i

iC v f
τ ∈

=∑
T

Non real-time

()iv f

if

Soft real-time

iD

Performance measures

Cost function – a general real-time performance measure

 Cumulative value:
 Value associated with a task as a function of its completion time

()
i

iC v f
τ ∈

=∑
T

()iv f

if

Hard real-time

iD

Performance measures

Cost function – a general real-time performance measure

 Cumulative value:
 Value associated with a task as a function of its completion time

()
i

iC v f
τ ∈

=∑
T

()iv f

if

