
Computer Communication EDA344/DIT420

Lab 1a

Packet and Traffic Analysis Using Network Sniffing Software

1. The mandatory part of the course consists of one written (home) assignment and
two practical sessions in the course labs. The assignment and both labs must be
completed to pass the course.

2. You may work in a group of max. 2 students using a workplace in the lab room.

3. Completed lab work must be reported with answers of the questions embedded

in the lab tasks. The report must be posted to Pingpong before the deadline.

Please read through this PM before attending the lab session and make sure that
you are prepared to use Wireshark.

This lab is including selected parts from the Wireshark Labs which can be
downloaded from the course book home page (“Student resources” / “Wireshark
labs”).

Wireshark ® is popular network protocol analyzer and it is available to download
using http://www.wireshark.org/download.html under the GNU General Public
License.

Purpose: To learn how to listen to local network traffic and analyze different protocols
as well as learning to use some useful TCP/IP utilities.

Background reading:
Read related sections in Chapter 2 (Application) and Chapter 3 (Transport), p lease
see below the outlined sections of the course book.

Preparation: Either at home using your own installation of the software or at campus
using the computers of the lab rooms J232 (Gnistan) and J234 (Bryggan), floor 2 in
Jupiter building; prepare by yourself the first part of the exercises “1. INTRO”
(Getting Started with Wireshark) to be familiar with the program and its usage.
Please refer to the “Wireshark Lab” at the end of Chapter 1 in the course book.

The following lab parts are the ones that should be performed fully during the lab
session.

2. HTTP (section 2.2)
3. DNS (section 2.5)
4. TCP (sections 3.5 and 3.7)

For those who wish and who have some time, you may also perform by yourself
the following optional labs at home:

(5. IP, 6. ICMP, 7. Ethernet and ARP, 8. DHCP, 9. UDP, 10. SSL, 11. 802.11, 12. NAT)

Useful and practical information
You will be working in the Windows environment but the instructions include as well
the Linux environment. To facilitate the work, a small list of things to think about
and practical information is found next on this page.

Time estimation:

Estimate about little bit more than one hour for each part of lab (they are three; HTTP,
DNS and TCP). Try to understand all topics before continuing with the next part!

Bring the book:

You will most likely have to consult the book about various topics, so make sure
your group has at least one book available!

Using Wireshark on computers in lab room:

You are going to use the Chalmers studat-computers located in Jup232 (Gnistan) and
Jup234 (Bryggan). When coming to the lab, you must log into the machine in front of you
using operating system Windows. Use your Chalmers student account to log in. You are
going to get some root privileges on these computers that allow you to perform the lab
tasks using Wireshark. Normally studat-users are not allowed to capture network traffic.

Note: In any other Studat-computers, Wireshark must run with administrator (root)
privileges. If you just start Wireshark, you will get an error message “permission denied”
when trying to capture packets.

Using traces:

The book resources include traces files for the Wireshark labs. You may use these pre-
recorded trace files at home but not during the lab session. Please note; do not use
any of these trace files during the lab exercises, since you are able to run Wireshark on
a live network connection in the lab room. You should use your own outworked traces.

Manuals and on-line help:

If you need help about a command, you can ask the system in Linux by giving for
example the command “man ifconfig” in a terminal window. In Windows use the help
parameter /? To get help, for example enter C:\> ipconfig /?. Also, note that the Linux
ifconfig has different arguments than Windows ipconfig.

Web browser:

When using web browser you may need to clear the cache as outlined in the text of
the instructions depending on which browser is in use.

DNS:

In addition to the nslookup command, you can experiment with the host command. In
order to flush DNS-cache in Linux use the command “ sudo /etc/init.d/nscd restart “
and in Windows as it is outlined in the text of the instructions.

1

The Basic HTTP GET/Response Interaction

Let’s begin the exploration of HTTP by downloading a very simple HTML file, one that is
very short, and contains no embedded objects.

 Start up your web browser.
 Start up the Wireshark packet sniffer, as described in the . Enter

the letters “ ” in the field of the display filter. Click the button so that only
captured HTTP messages will be displayed in the packet list. (The only interest here
is in the HTTP protocol, and you don’t want to see the clutter of all captured
packets).

 Begin Wireshark packet capture.
 Enter the following to your browser:

http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file1.html
Your browser should display the very simple, one-line HTML file.

 Stop Wireshark packet capture.

The window-pane of the packet list will show that two HTTP messages were captured: the
GET message (from your browser to the web server) and the response
message from the server to your browser.

Note: You should ignore any HTTP GET request and response for favicon.ico. If you see a
request to this file, it is because of the browser which is automatically asking the server if it
has a small icon file that would be displayed next to the URL in the address field.

© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved.

Supplement to Computer Networking: A Top-Down Approach,
6

th

ed., J.F. Kurose and K.W. Ross.

 Adopted and Modified based on

Wireshark Lab: HTTP v6.1

“Tell me and I forget. Show me and I remember. Involve me and I
understand.” Chinese proverb.

Do the at home to be familiar with the Wireshark packet sniffer.

 Learn carefully about “The Web and HTTP” in of the course book.

 Use Wireshark to investigate the HTTP protocol in operation.

You will explore several aspects of the HTTP protocol: the basic GET/response interaction, HTTP
message format, retrieving large HTML file, retrieving HTML file with embedded objects.

2

The next window-pane of the packet details shows details of the selected message (in this
case the HTTP GET message, which is highlighted in the packet list).

Recall that since the HTTP message is carried inside a TCP segment, which is carried inside
an IP datagram, which is carried within an Ethernet frame, Wireshark displays the Frame,
Ethernet, IP, and TCP header information as well.

It is highly desired to minimize the amount of non-HTTP data displayed so make sure that
the boxes at the far left of the Frame, Ethernet, IP and TCP information have a plus sign or a
right-pointing triangle, and the HTTP line has a minus sign or a down-pointing triangle
(which means that all information about the HTTP message is displayed).

By inspecting and looking at the information in the HTTP GET and response messages,
answer the following questions.

1. What is the IP address of your computer? Of the server?

2. What HTTP version is your browser running? What version of HTTP is the server

running?

3. What is the status code and phrase returned from the server to your browser?

4. What languages does your browser indicate to the server that it can accept? Which

header line is used to indicate this information?

5. When was the HTML-file, that you have retrieved, last modified at the server? Which

header line is used to indicate this information?

6. How many bytes of content (size of file) are returned to your browser? Which header

line is used to indicate this information?

In your answer to question 5 above, you might have been surprised to find that the file you
just retrieved has been last modified within a minute before you have downloaded the
content. That’s because (for this particular file), the server is setting the
file’s last-modified time to be the current time, and is doing so once per minute. Thus, if you
wait a minute and then retrieve again, the file will appear to have been recently modified,
and hence your browser will download a “new” copy of it.

HTTP Conditional GET/Response Interaction

Recall from of the course book, that most web browsers perform object
caching and thus perform the conditional GET when retrieving HTTP objects.
Before performing the steps below, make sure that your browser’s cache is empty. To do
this under Firefox (25.0), select Settings > Advanced > Network > Clear Now (Cached Web
Content), or for Internet Explorer (11.0), select Tools > Internet Options > Delete
..(Browsing history). These actions will remove cached files from your browser’s cache.

3

 Start up your web browser, and make sure your browser’s cache is cleared.
 Start up the Wireshark packet sniffer, and make sure that “http” is in the display-

filter, so that only captured HTTP messages will be displayed in the packet-list pane.
 Enter the following URL into your browser:

http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file2.html
Your browser should display a very simple five-line HTML file.

 Quickly enter the same URL into your browser again (or simply select the refresh
button on your browser)

 Stop Wireshark packet capture.

7. Inspect the contents of the first HTTP GET from your browser to the server. Is

there an “IF-MODIFIED-SINCE” header line in the HTTP GET message? Why or why
not?

8. Inspect the contents of the server . Has the server explicitly returned the
contents of the file? How can you tell?

9. Now inspect the contents of the second HTTP GET from your browser to the
server. Is there an “IF-MODIFIED-SINCE:” header line in the HTTP GET message? If
so, what information follows the “IF-MODIFIED-SINCE:” header line?

10. What is the HTTP status code and phrase returned from the server in to this
second HTTP GET? Has the server explicitly returned the contents of the file? Explain.

Retrieving Long Documents

In the examples thus far, the files that are retrieved, have been simple and short HTML files.
Let’s next see what happens when you download a long HTML file.

 Start up your web browser, and make sure that browser’s cache is cleared.
 Start up the Wireshark and make sure that “http” is in the display-filter.
 Enter the following URL into your browser.

http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file3.html
Your browser should display the rather lengthy .

 Stop Wireshark packet capture.

In the packet-list pane, you should see the HTTP GET message, followed by a multiple-
packet TCP response to the HTTP GET request. This multiple-packet response deserves a
bit of explanation. Recall from of the course book (see Figure 2.9) that the
HTTP response message consists of a , followed by , followed by a

, followed by the . In the HTTP response, the entity body in the
message is the entire requested HTML file. In this case, the HTML file is rather long, and is
4500 bytes such that it is too large to fit in one TCP segment. The single HTTP response

4

message is thus broken into several pieces by TCP; i.e. segmented, with each piece being
contained within a separate TCP segment. In recent versions, Wireshark indicates each TCP
segment carried in a separate packet, and the fact, that the single HTTP response is
segmented across multiple TCP segments, is indicated by the “TCP segment of a
reassembled PDU” in the Info column of the Wireshark display. Earlier versions of
Wireshark use the “Continuation” phrase to indicate that the entire content of an HTTP
message was broken across multiple TCP segments. It should be obvious here that there is
no “Continuation” message in HTTP! Please check Wireshark menu

 to see what options to choose in order to suppress reassembly.

.

11. How many HTTP GET request messages has your browser sent? Which packet in the
trace contains the request for the ?
Note: The packets here are only those containing HTTP messages and data.

12. Which packet in the trace contains the status code and phrase associated with the

response to the HTTP GET request? What is the status code and phrase in the response?

13. How many TCP segments are needed to carry the single HTTP response and the text of

the ? What is the number of bytes (of the text) in each segment?

HTML Documents with Embedded Objects

Now you can look at what happens when your browser downloads a file with embedded
objects, i.e. a file with references to other objects (in the example below, image files) that
are stored on another server(s).

 Start up your web browser, and make sure your browser’s cache is cleared.
 Start up the Wireshark packet sniffer.
 Enter the following URL into your browser:

http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file4.html

Your browser should display a short HTML file with two images. These two images are
referenced in the base HTML file. However the images themselves are not stored in the
same server as the HTML file. As referenced objects, the browser will have to retrieve these
images (logos) from the indicated web sites. The publisher’s logo is retrieved from the
Pearson Education server. The image of the cover for the 5th
edition of the course book (one of the authors favorite covers) is stored at the

 server.
 Stop Wireshark packet capture.

14. How many HTTP GET request messages has your browser sent? To which IP-address

is of these GET requests sent?

15. How can you tell whether your browser has downloaded the two images serially, or
whether they have been downloaded from the two web sites in parallel? Explain.

1

Capturing a bulk TCP transfer from your computer to a remote server

In order to perform an exploration of TCP, you’ll need to use Wireshark to obtain a packet
trace of the TCP transfer of a large file from your computer to a remote server. You’ll do so
by accessing a Web page that will allow you to enter the name of a file stored on your
computer (which contains the ASCII text of Alice in Wonderland), and then transfer the file
to a Web server using the HTTP POST method (see Section 2.2.3).

You’re going to use the POST method rather than the GET method to transfer a large
amount of data from your computer to another computer. Of course, you’ll be running
Wireshark during this time to obtain the trace of the TCP segments sent and received from
your computer.

Do the following:

 Start up your web browser.
 Go to: http://gaia.cs.umass.edu/wireshark-labs/alice.txt Retrieve an ASCII copy of

Alice in Wonderland. Store this file somewhere on your computer.
 Open the file alice.txt using the editing program Notepad, copy the whole text and

append it to (paste after) the existing content so that the file will be twice as large as
the original downloaded file. Save the file without changing the name.

 Next go to: http://gaia.cs.umass.edu/wireshark-labs/TCP-wireshark-file1.html

 You should see a screen (on next page) that looks like:

© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved.

Supplement to Computer Networking: A Top-Down Approach,
6

th

ed., J.F. Kurose and K.W. Ross.

 Adopted and Modified based on

Wireshark Lab: TCP v6.0

“Tell me and I forget. Show me and I remember. Involve me and I
understand.” Chinese proverb.

Reading: Learn carefully about TCP in Sections 3.5 and 3.7 of the course book.

Main Task: Analyze a trace of the TCP segments sent and received in transferring a large file (containing the text
of Lewis Carrol’s Alice’s Adventures in Wonderland) from your computer to a remote server.

You will investigate the behavior of the celebrated TCP protocol in detail. You’ll study TCP’s use of sequence and
acknowledgement numbers for providing reliable data transfer; you’ll see TCP’s congestion control algorithm,
slow start and probably congestion avoidance in action; and you’ll look at TCP’s receiver-advertised flow control
mechanism. You’ll also briefly consider TCP connection setup and investigate the performance (throughput and
round-trip time) of the TCP connection between your computer and a remote server.

2

 Use the Browse button in this form to enter the name of the file (full path name)
on your computer containing Alice in Wonderland (or do so manually). Don’t
yet press the “Upload alice.txt file” button.

 Now start up Wireshark and begin packet capture with “tcp” as filter.
 Returning to your browser, press the “Upload alice.txt file” button to upload the

file to the gaia.cs.umass.edu server. Once the file has been uploaded, a short
congratulations message will be displayed in your browser window.

 Stop Wireshark packet capture.

A first look at the captured trace

Before analyzing the behavior of the TCP connection in detail, let’s take a high level view
of the trace. What you should see; is series of TCP segments between your computer and the
server gaia.cs.umass.edu.

 You should see the initial three-way handshake achieved by SYN, SYN/ACK and
ACK segments.

 You should see the first TCP data-segment containing the header of an HTTP POST
message and probably the first part of the uploaded file.

 Depending on the version of Wireshark you are using, you might see a series of
“HTTP Continuation” messages being sent from your computer to the server. Recall
from the discussion in the earlier HTTP Wireshark lab, that there is no such thing as
an HTTP Continuation message. These are TCP data-segments carrying the contents
of the file.

 You should also see TCP ACK-segments being returned from gaia.cs.umass.edu to
your computer.

3

Answer the following questions:

Hint: To answer these questions, it’s probably easiest to select the segment containing
POST message and explore the details of the packet used to carry this segment.

1. What is the source IP address and TCP port number used by your computer that is

transferring the file to gaia.cs.umass.edu?

2. What is the destination IP address of gaia.cs.umass.edu? On what port number is it
sending and receiving TCP segments for this connection?

TCP basics and behavior

Since this lab is about TCP rather than HTTP, make sure that Wireshark’s packet list shows
information about the TCP segments containing the HTTP messages, rather than about the
HTTP messages. This will be shown as a series of TCP segments sent between your
computer and the web server gaia.cs.umass.edu. You will use the packet trace that you
have captured to study TCP behavior in the rest of this lab. Save a file of the trace to your
home directory so that you may make use of it at home.

Note: The sequence and acknowledgement numbers in the following questions should be
taken relatively to the initial sequence number (number 0). Wireshark will do this by
default, displaying relative numbers.

Answer the following questions:

3. Identify the TCP segments that are used to initiate the TCP connection between the

client computer and gaia.cs.umass.edu.

- How many segments are used?
- What is in the TCP header that identifies the segment as a handshaking segment?

4. Considering the TCP segment containing the HTTP POST, what are the sequence

numbers of the first six data-carrying segments in the TCP connection (including the
segment containing the HTTP POST)?

Note: that in order to find the POST header field; you’ll need to dig into the packet
content field at the bottom of the Wireshark window, looking for a segment with a
“POST” within its DATA field.

5. What is the length of each of these six TCP segments? The length of the TCP segment is
only the number of data bytes carried inside the segment (excluding the headers).

6. Record the time that each of the six segments (in question 4) has been sent. At which

time has an acknowledgement (for each data-carrying segment) been received?

7. After the lab session, make the following calculations and include the results in your
report. Please make a table of the recorded and calculated values of time along with
the segment and sequence numbers (i.e. combining answers to questions 4, 5 and 6).

4

a) Given the difference between the time when each TCP segment was sent, and the
time when its acknowledgement was received, calculate the RTT value for each of
those six segments (in questions 4, 5 and 6).

b) Calculate the EstimatedRTT value using the measured RTT values in the answer of
question 9. b). Assume that the initial value of the EstimatedRTT is equal to the
measured RTT for the first (POST) segment, and then as described in Section 3.5.3
in the course book (using the EstimatedRTT equation on page 256) calculate the
EstimatedRTT for the subsequent segments (they are five!).

TCP Acknowledgements

10. What is it specified by the value of the Acknowledgement field in any received

segment? How does gaia.cs.umass.edu; for example, determine this value?

11. How much data (number of bytes) does the receiver typically acknowledge in an ACK?

12. Are there cases where the receiver (the web server) is ACKing accumulatively? Please
check the whole trace and describe the behavior of TCP when ACKing received data.

TCP congestion control in action

Let’s now examine the amount of data (in bytes) sent in each round of the transfer session
from the client to the server. Rather than (tediously!) calculating this from the trace in
Wireshark, you will use one of Wireshark’s TCP graphing utilities; Time-Sequence-Graph
(Stevens) to plot out the amount of data versus time. This Stevens-graph tool is plotting the
sequence number of each segment versus the time at which it has been sent.

 In Wireshark, highlight any TCP data-segment from the packet list for the trace that

you have gathered when you transferred a file from the client to the server. Then
select the menu: Statistics > TCP Stream Graph > Time-Sequence-Graph (Stevens).

 You should see a window with a graph of dots where each dot represents a TCP
segment sent. Note that a set of dots stacked above each other represents a series of
segments that were sent back-to-back (pipelined) by the TCP sender.

 Save a copy of the window of the plot to be included in your report.

Answer the following questions:

13. How can you identify the TCP’s slow-start phase, when does it begin, and whether

congestion avoidance takes over? Describe the behavior of the sending TCP during
each round based on the plot that you get.

14. Where do you find the (advertised) amount of available buffer space at the receiver (the
server)? Does the lack of receiver buffer space ever throttle the sender? Explain clearly.

15. What is the overall throughput in bit/s (bits transferred per unit time) for the whole
session of transferring the file? Explain how you calculate this value.

1

Nslookup

You should have learned about the use of nslookup during the preparation work.

 Do the following (and write down the results):

1. Run nslookup to obtain the IP address of a Web server in Africa. What is the hostname

and IP address of that server? Provide the command and results.

2. Run nslookup to determine the authoritative DNS servers for a university in South
America. Provide the command and results.

3. Run nslookup so that one of the DNS servers obtained in Question 2 is queried for the
mail servers for the domain amazon.com. Provide the command and results. Do you
get answer? Why or why not.

Tracing DNS with Wireshark

Now that you are familiar with nslookup, you’ll investigate the DNS messages by capturing
the DNS packets that are generated by ordinary Web-surfing activity.

 Use ipconfig to clear the DNS cache in your host.

© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved.

Supplement to Computer Networking: A Top-Down Approach,
6

th

ed., J.F. Kurose and K.W. Ross.

Preparation: Learn about the use and syntax of the command nslookup before the lab session.

Reading: Learn carefully about “DNS: The Internet’s Directory Service” in Section 2.5 of the course
book. In particular, you may need to review the material on local (cache-only) DNS servers, DNS
caching, DNS resource records (RRs), DNS messages, and the TYPE field in the DNS record.

Main Task: Make extensive use of the nslookup tool, which is normally available in most Linux/Unix
and Microsoft platforms. Also use Wireshark to investigate the operation of DNS at the client side.

The Domain Name System (DNS) mainly translates hostnames to IP addresses, fulfilling a critical
role in the Internet infrastructure. In this lab, you’ll take a closer look at the client side of DNS.
Recall that the client’s role in the DNS is relatively simple; the client sends a query to its local DNS
server, and receives a response back. As shown in Figures 2.21 and 2.22 in the course book, much
can go on “under the covers,” invisible to the DNS clients, as the hierarchical DNS servers
communicate with each other to either recursively or iteratively resolve the client’s DNS query.

 Adopted and Modified based on

Wireshark Lab: DNS v6.0

“Tell me and I forget. Show me and I remember. Involve me and I
understand.” Chinese proverb.

2

 Open your browser and empty the browser cache.
 Open Wireshark and enter “dns && ip.addr = = host_IP_address” into the display

filter, where you obtain host_IP_address with ipconfig. This filter removes all
packets that neither originate nor are destined to your host.

 Start packet capture in Wireshark.
 With your browser, visit the Web page: http://www.ietf.org
 Stop packet capture.

Please answer the following questions with explanations.

Note: Each DNS message consists of a fixed-length header and sections. Please identify
the different fields of any captured DNS message in the trace.

4. Locate the DNS query and response messages (resolving www.ietf.org). Are they
transported using UDP or TCP? Explain why.

5. What is the destination port for the DNS query message?

6. What is the source port of DNS response message?

7. To what IP address is the DNS query message sent? Use ipconfig /all to determine the
IP address of your local DNS server. Are these two IP addresses the same?

8. Examine the DNS query message. What “type” of query is it? What “sections” does the
query message contain?

9. Examine the DNS response message. What “sections” does the response message
contain? Are there “answers” provided? What does each of these answers contain?

10. This web page contains images. Before retrieving each image, does the host’s DNS
client issue new DNS queries? Why or why not?

Now let’s capture DNS packets when executing the command nslookup.

 Start packet capture with Wireshark and use “dns && ip.addr = = host_address“ filter.
 Do an nslookup on www.tue.nl.
 Stop packet capture.

For the purpose of this assignment, and in answering the following questions, ignore any sets of
queries/responses rather than the query for (www.tue.nl), i.e. the hostname of the web server of
the Eindhoven University of Technology. These extra queries are specific to the Windows
DNS client (which appends primary and connection specific DNS suffixes) and are not
normally generated by standard Internet applications. You should instead focus on the intended
query/response messages that will normally appear at the end of the packet list.

11. Examine the DNS response message. Describe (with your own words) the content of

this DNS message, its different parts “sections” and the format of the resource records in
each section.

