
Data Communication EDA344, DIT420
Assignment 1

Bapi Chatterjee

DataCommunication'13

Overview
• Multi-threaded Web Server

– What to do and how to do it

– HTTP messages

– Processes and threads

• Wireshark lab

– General Description

Important
• You have to read Instructions for assignment process

and submission in pingpong

• Choose one option: either HTTP server programming or

Wireshark lab

• Http programming: you can do it at home, but you have

to demonstrate your program in the lab session

• Wireshark lab should be done in the lab room in

Lindholmen

DataCommunication'13

Important date

• Jan 22: Invitations for the HTTP lab are sent (to

everybody, if you want to attend this lab, then

accept(book) before Jan 26, otherwise ignore).

• Feb 4: Submission for the preparation report of

Wireshark lab (if you want to attend this lab)

• Feb 6: Invitations for the wireshark lab are sent

(only to the students who submit wireshark

preparation report)

DataCommunication'13

After the invitation

• (Accept the invitation) When an invitation is sent

to you, you will also be notified by mail to your

mail-id. You should log-in to your ping-pong

account and go to the invitations (On top menu :

Tools -> Invitations). Check the current

invitations and click on the link 'Book me on

event' to book yourself for the event.

DataCommunication'13

Focus on the labs now

DataCommunication'13

DataCommunication'13

Multi-threaded Web Server

• The task:

– Write a small Web server that supports a

subset of the HTTP 1.0 specifications

– The server should

• be able to handle simultaneous requests

• implement the HTTP methods GET and HEAD

• handle and respond to invalid requests

• Include Date:, Server:, Content-Type: and Content-

Length: headers in all responses. Last-Modified:

should be included where appropriate.

DataCommunication'13

Multi-threaded Web Server

• Hints

– Read the textbook

• an example: simple Web server that does not

handle simultaneous requests (Section 2.7, 2.9, 5th

edition)

– To handle concurrent requests

• One way is to create a thread for each request

– Java tutorial Writing a Client/Server pair

– Check course assignments page for hints

DataCommunication'13

http message format: request

ASCII (human-readable format;

try telnet to www server, port 80)

GET /somedir/page.html HTTP/1.0

Host: www.someschool.edu

Connection: close

User-agent: Mozilla/4.0

Accept: text/html, image/gif,image/jpeg

Accept-language:fr

(extra carriage return + line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

DataCommunication'13

http request message: general format

DataCommunication'13

http message format: response

HTTP/1.0 200 OK

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
html file

DataCommunication'13

http response status codes

200 OK

– request succeeded, requested object later in this message

301 Moved Permanently

– requested object moved, new location specified later in this

message (Location:)

400 Bad Request

– request message not understood by server

404 Not Found

– requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.

A few sample codes:

DataCommunication'13

Java Concurrency Support

class MessagePrinter implements Runnable {

protected String msg_; The message to print

protected PrintStream out_; The place to print it

MessagePrinter(String msg, PrintStream out)
{

out_ = out;

msg_ = msg;

}

public void run() {

out_.print(msg_); // display the message

}

}

DataCommunication'13

Sequential Version

class SequentialPrinter {

public static void main(String[] args) {

MessagePrinter mpHello = new
MessagePrinter("Hello\n", System.out);

MessagePrinter mpGoodbye = new
MessagePrinter("Goodbye\n", System.out);

mpHello.run();

mpGoodbye.run();

}

}

DataCommunication'13

MultiThreaded Version

class ConcurrentPrinter {

public static void main(String[] args) {

MessagePrinter mpHello = new
MessagePrinter("Hello\n", System.out);

MessagePrinter mpGoodbye = new
MessagePrinter("Goodbye\n", System.out);

Thread tHello = new Thread(mpHello);

Thread tGoodbye = new Thread(mpGoodbye);

tHello.start();

tGoodbye.start();

}

}

DataCommunication'13

Different types of servers

• Single process/thread

do forever

accept client connection

process all client requests

close connection

• One thread per connection

do forever

accept client connection

create a new thread to process requests

Socket programming

• goal: learn how to build client/server applications

that communicate using sockets

• socket: door between application process and

end-end-transport protocol

Application Layer2-17

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer2-18

Socket programming

Two socket types for two transport services:

– UDP: unreliable datagram

– TCP: reliable, byte stream-oriented

TCP Client Socket: Socket

TCP Server Socket: ServerSocket

We will see examples in our skeleton code

Wireshark Lab

• Downloading wireshark and install it in

your machine

• Follow the preparation notes for the lab to

get familiar with wireshark.

• Try the lab instruction manual yourself and

there will be help during the lab session.

DataCommunication'13

