Computer Security

Lecture 1
VULNERABILITIES, THREATS and PROTECTION MECHANISMS

Magnus Almgren (Erland Jonsson)
Department of Computer Science
and Engineering
Chalmers University of Technology

Terminology 1

- an *attack* is an intentional activity conducted or initiated by a human, attempting to cause a breach in a system or to compromise a system.
- a **breach** is the resulting violation of the security policy of a system.
- We use the term *intrusion* (or *penetration*) to denote an attack and its corresponding breach.

Terminology 2

- a *vulnerability* is a place in the system where it is open for attack (at least to some extent)
- a *threat* is something that can give undesired, negative consequences for the system
- a countermeasure or protection or control is a technique that will protect the system against attacks

Security of Data – "CIA"

Many other definitions exist!

Examples of Security Problems

- intrusions, attacks
- eavesdropping (local, transmission, radiation, tempest)
- hardware, hardware errors
- software errors (bugs), software design methods!
- malicious software (virus, Trojan horses, COTS, etc)
- inadequate management, deficient configurations
- failure propagation, i.e. consequences of security problems in other systems
- ignorant users
- mistakes

Intruders

WHO ARE THE INTRUDERS?:

- "insiders" and "outsiders"
- outsiders are hackers, terrorists, thieves, enemy states, spy organisations, in principle almost anybody...

BUT WHO IS AN INSIDER?:

An **insider** is somebody who has *access to the system* to some extent

- the ordinary user
- the former user
- maintenance personnel (system administrator, etc)
- the designer!! (back doors, Trojan horses)

Network Security Attacks

- classify as passive or active
- passive attacks are eavesdropping
 - release of message contents
 - traffic analysis
 - are hard to detect so aim to prevent
- >active attacks modify/fake data
 - masquerade
 - replay
 - modification
 - denial of service
 - hard to prevent so aim to detect

Computer Security – major defence lines

SECURITY

Security=Datasäkerhet

Examples of protection mechanisms

- preventive protection:
 - legal protection
 - reducing threats (e.g. "security check-ups")
 - education / information / propaganda!
- boundary protection mechanisms:
 - shield cables
 - encryption
 - physical protection (e.g. locks)
 - access control
- internal protection, recovery:
 - (anti-)virus programs
 - supervision mechanisms (with response capabilities)
 - intrusion detection (with response capability)
 - encryption of stored data

Defence-in-depth!

- should be applied

Protection mechanisms principles

- >technical measures:
 - access control; identification & authentication; system & communication protection; system & information integrity
- > management controls and procedures
 - awareness & training; audit & accountability; certification, accreditation, & security assessments; contingency planning; maintenance; physical & environmental protection; planning; personnel security; risk assessment; systems & services acquisition
- overlapping technical and management:
 - configuration management; incident response; media protection

Examples of protection mechanisms

- protect the hardware (computers, servers, CDs, backups, modems, printers)
- use authentication (passwords, smartcards, etc)
- introduce access controls (read, write, execute, install)
- use anti-virus programs
- install a **firewall**. Configure it properly!
- supervision and intrusion detection mechanisms
- install **spam filtering** (whitelisting, blacklisting greylisting, etc)
- real sensitive networks and computers should be isolated

Security Technologies Used

Source: Computer Security Institute/FBI 2006 Computer Crime and Security Survey

Information, methods and tools to enhance security

- know your system!
- update it continuously!
- supervise it
- make use of available security mechanisms
- alarm reports (CERT, OWASP, hacker-sites, ...)
- information about "patches"
- tools for analysis and intrusion detection
- educate the people!! (particularly the users)

....mostly for the system administrator

Security terminology flow chart

- 1. Security is not as simple as it may appear to the novice.
 - Possible to attack the security mechanism?
 - Security is not done in isolation from the rest of the system.
- 2. Security is a "chess game" between the attacker and the security administrator:
 - The attacker only needs to find a *single* vulnerability to penetrate the system, while the administrator needs to patch *all* holes to ensure system security.
- 3. Natural tendency to disregard security problems *until* a security failure occurs.
- Security is a process → constant monitoring, long-term perspective.
- 5. Security is often an afterthought added after the system has been designed.
- 6. Some users think security is restricting them in their job.

- 1. Security is not as simple as it may appear to the novice.
 - Possible to attack the security mechanism?
 - Security is not done in isolation from the rest of the system.
- 2. Security is a "chess game" between the attacker and the security administrator:
 - The attacker only needs to find a *single* vulnerability to penetrate the system, while the administrator needs to patch *all* holes to ensure system security.
- 3. Natural tendency to disregard security problems *until* a security failure occurs.
- Security is a process → constant monitoring, long-term perspective.
- 5. Security is often an afterthought added after the system has been designed.
- 6. Some users think security is restricting them in their job.

- 1. Security is not as simple as it may appear to the novice.
 - Possible to attack the security mechanism?
 - Security is not done in isolation from the rest of the system.
- 2. Security is a "chess game" between the attacker and the security administrator:
 - The attacker only needs to find a single vulnerability to penetrate the system, while the administrator needs to patch all holes to ensure system security.
- 3. Natural tendency to disregard security problems *until* a security failure occurs.
- Security is a process → constant monitoring, long-term perspective.
- Security is often an afterthought added after the system has been designed.
- 6. Some users think security is restricting them in their job.

- Security is not as simple as it may appear to the novice.
 - Possible to attack the security mechanism?
 - Security is not done in isolation from the rest of the system.
- 2. Security is a "chess game" between the attacker and the security administrator:
 - The attacker only needs to find a single vulnerability to penetrate the system, while the administrator needs to patch all holes to ensure system security.
- 3. Natural tendency to disregard security problems *until* a security failure occurs.
- 4. Security is a process → constant monitoring, long-term perspective.
- 5. Security is often an afterthought added after the system has been designed.
- 6. Some users think security is restricting them in their job.

- 1. Security is not as simple as it may appear to the novice.
 - Possible to attack the security mechanism?
 - Security is not done in isolation from the rest of the system.
- 2. Security is a "chess game" between the attacker and the security administrator:
 - The attacker only needs to find a single vulnerability to penetrate the system, while the administrator needs to patch all holes to ensure system security.
- 3. Natural tendency to disregard security problems *until* a security failure occurs.
- Security is a process → constant monitoring, long-term perspective.
- Security is often an afterthought added after the system has been designed.
- 6. Some users think security is restricting them in their job.

- Security is not as simple as it may appear to the novice.
 - Possible to attack the security mechanism?
 - Security is not done in isolation from the rest of the system.
- 2. Security is a "chess game" between the attacker and the security administrator:
 - The attacker only needs to find a single vulnerability to penetrate the system, while the administrator needs to patch all holes to ensure system security.
- 3. Natural tendency to disregard security problems *until* a security failure occurs.
- Security is a process → constant monitoring, long-term perspective.
- 5. Security is often an afterthought added after the system has been designed.
- 6. Some users think security is restricting them in their job.

Security is the lack of insecurity!

General reflections

- Security is a **continuous process**.
 - there are no "free lunches"
 - the "biological" analogy ("several levels of protection")
- You can not add security, only reduce insecurity
 - hacker's vs owner's perspective (at analysis)
- A computer system is never 100% secure
 - in particular not distributed systems
 - in any case you cannot verify security.
- Consider the **threats** and the **value** of what you protect:
- → Principle of Adequate Protection:

Computer items must be protected only until they lose their value.

They must be protected to a degree consistent with their value.