
Binary search trees
(chapters 18.1 – 18.3)

horsehorse

Binary search trees

In a binary search tree (BST), every node is
greater than all its left descendants, and
less than all its right descendants
(recall that this
is an invariant) owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

horsehorse

Searching in a BST

Finding an element in a BST is easy,
because by looking at the root you can
tell which subtree the element is in

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

lemur must be
in left subtree

of owl

lemur must be
in right subtree

of hamster

Searching in a binary search tree

To search for target in a BST:
● If the target matches the root node's data, we've

found it
● If the target is less than the root node's data,

recursively search the left subtree
● If the target is greater than the root node's data,

recursively search the right subtree
● If the tree is empty, fail

A BST can be used to implement a set, or
a map from keys to values

Inserting into a BST

To insert a value into a BST:
● Start by searching for the value
● But when you get to null (the empty tree), make a

node for the value and place it there

horsehorse

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

monkeymonkey

Deleting from a BST

To delete a value into a BST:
● Find the node containing the value
● If the node is a leaf, just remove it

horsehorse

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

To delete wolf,
just remove

this node from
the tree

Deleting from a BST, continued

If the node has one child, replace the node
with its child

horsehorse

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

To delete penguin,
replace it in the
tree with wolf

Deleting from a BST

To delete a value from a BST:
● Find the node
● If it has no children, just remove it from the tree
● If it has one child, replace the node with its child
● If it has two children...?

Can't remove the node without removing its
children too!

Deleting a node with two children

Delete the biggest value from the node's left
subtree and put this value [why this one?]
in place of the node we want to delete

Delete owl
by replacing it
with monkey

Delete
monkeyhorsehorse

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

monkeymonkey

Deleting a node with two children

Delete the biggest value from the node's left
subtree and put this value [why this one?]
in place of the node we want to delete

The root is
now monkey

horsehorse

monkeymonkey

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

Deleting a node with two children

Here is the most complicated case:
To delete

monkey, replace
it by lemur

horsehorse

monkeymonkey

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

But lemur has a
child! Put horse

where lemur was

Deleting a node with two children

Here is the most complicated case:
To delete

monkey, replace
it by lemur

horsehorse

monkeymonkey

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

But lemur has a
child! Put horse

where lemur was

Deleting a node with two children

Here is the most complicated case:

lemurlemur

horsehorsegorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

A bigger example

What happens if we delete
farmer? is? cow? rat?

Deleting a node with two children

Deleting rat, we replace it with priest;
now we have to delete priest which has a
child, morn

Deleting a node with two children

Find and delete the biggest value in the left
subtree and put that value in the deleted
node
● Using the biggest value preserves the

invariant (check you understand why)
● To find the biggest value: repeatedly

descend into the right child until you find
a node with no right child

● The biggest node can't have two children,
so deleting it is easier

Complexity of BST operations

All our operations are O(height of tree)
This means O(log n) if the tree is
balanced, but O(n) if it's unbalanced (like
the tree on the right)
● how might we get

this tree?

Balanced BSTs add an
extra invariant that makes
sure the tree is balanced
● then all operations are O(log n)

Summary of BSTs

Binary trees with BST invariant
Can be used to implement sets and maps
● lookup: can easily find a value in the tree
● insert: perform a lookup, then put the new value at the

place where the lookup would terminate
● delete: find the value, then remove its node from the tree –

several cases depending on how many children the node has

Complexity:
● all operations O(height of tree)
● that is, O(log n) if tree is balanced, O(n) if unbalanced
● inserting random data tends to give balanced trees,

sequential data gives unbalanced ones

Tree traversal

Traversing a tree means visiting all its
nodes in some order
A traversal is a particular order that we
visit the nodes in
Three common traversals: preorder,
inorder, postorder

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Preorder traversal

hamsterhamster

1

2

3

4

5

6

7

Visit root node, then left subtree, then
right (root node first)

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Postorder traversal

hamsterhamster

7

4

2

1

3

6

5

Visit left subtree, then right, then root
node (root node last)

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Inorder traversal

hamsterhamster

5

3

2

1

4

6

7

Visit left subtree, then root node, then
right (root node in middle)

Inorder traversal
of a BST gives you

the nodes in
ascending order!

In-order traversal – printing

void inorder(Node<E> node) {
 if (node == null) return;
 inorder(node.left);
 System.out.println(node.value);
 inorder(node.right);
}
But nicer to define an iterator!
Iterator<Node<E>> inorder(Node<E>
node);
See 17.4

AVL trees
(chapter 18.4)

Balanced BSTs: the problem

The BST operations take O(height of tree), so
for unbalanced trees can take O(n) time

Balanced BSTs: the solution

Take BSTs and add an extra invariant
that makes sure that the tree is balanced
● Height of tree must be O(log n)
● Then all operations will take O(log n) time

One possible idea for an invariant:
● Height of left child = height of right child

(for all nodes in the tree)
● Tree would be sort of “perfectly balanced”

What's wrong with this idea?

A too restrictive invariant

Perfect balance is too restrictive!
Number of nodes can only be 1, 3, 7, 15,
31, ... owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

hamsterhamster

pandapanda

AVL trees – a less restrictive invariant

The AVL tree is the first balanced BST
discovered (from 1962) – it's named after
Adelson-Velsky and Landis
It's a BST with the following invariant:
● The difference in heights between the left and

right children of any node is at most 1

This makes the tree's height O(log n), so
it's balanced

Example of an AVL tree
(from Wikipedia)

12 23 54 76

9 14 19 67

50

17 72

Left child height 2
Right child height 1Left child height 2

Right child height 2

Left child height 1
Right child height 0

Why are these not AVL trees?

Why are these not AVL trees?

Left child height 0
Right child height 8

Why are these not AVL trees?

Left child height 1
Right child height 3

Rotation

Rotation rearranges a BST by moving a
different node to the root, without
changing the BST's contents

(pic from Wikipedia)

Rotation

We can strategically use rotations to
rebalance an unbalanced tree.
This is what most balanced BST variants
do!

Height of 4

Height of 3

AVL insertion

Start by doing a BST insertion
● This might break the AVL (balance) invariant

Then go upwards from the newly-inserted
node, looking for nodes that break the
invariant (unbalanced nodes)
Whenever you find one, rotate it
● Then continue upwards in the tree

There are several cases depending on how
the node became unbalanced

Case 1: a left-left tree

50

c

25

ba

Each pink triangle
represents an

AVL tree
with height k

The purple represents
an insertion that has
increased the height

of tree a to k+1

Case 1: a left-left tree

50

c

25

ba

Height kHeight k+2

Left height minus
right height = 2:

invariant broken!

Case 1: a left-left tree

50

c

25

ba

This is called a
left-left tree

because both the root and
the left child are deeper

on the left

To fix it we do a
right rotation

Balancing a left-left tree, afterwards

50

c

25

b

a

Height k+1 Height k+1

Invariant
restored!

Case 2: a right-right tree

25

a

50

b c

Mirror image of left-left tree
Can be fixed with

left rotation

Case 3: a left-right tree

50

c

25

ba

Height kHeight k+2

Left height minus
right height = 2:

invariant broken!

Case 3: a left-right tree

50

c

25

ba We can't fix this with
one rotation

Let's look at b's
subtrees b

L
 and b

R

Case 3: a left-right tree

50

c

25

a

Rotate 25-subtree to the left

40

bRbL

Height k-1

Case 3: a left-right tree

50

c
25

a

We now have a left-left tree!
So we can fix it by

rotating the whole tree
to the right

40

bR

bL

Height k+2 Height kHeight k+2

Height k+1

Case 3: a left-right tree

50

c

25

a

40

bRbL

Balanced!
Notice it works whichever

of b
L
 and b

R
 has the

extra height

Case 4: a right-left tree

25

a

50

b c

Mirror image of
left-right tree

Four sorts of unbalanced trees

Left-left (height of left-left grandchild =
k+1, height of left child = k+2, height of
right child = k)
● Rotate the whole tree to the right

Left-right (height of left-right grandchild
= k+1, height of left child = k+2, height of
right child = k)
● First rotate the left child to the left
● Then rotate the whole tree to the right

Right-left and right-right: symmetric

The four cases

(picture from Wikipedia)
The numbers in the
diagram show the balance
of the tree: left height
minus right height
To implement this
efficiently, record the
balance in the nodes and
look at it to work out
which case you're in

5

D

3

A

4

CB

Left Right Case Right Left Case

3

A

4

5

C D

B

Right Right Case

5

D

4

3

BA

C

Left Left Case

4

5

C D

Balanced

3

A B

4

5

C D

Balanced

3

A B

3

A

5

D

4

B C

-22

1-1

2 -2

1/0 -1/0

-1/0 1/0

49

A bigger example
(slides from Peter Ljunglöf)

Let's build an AVL tree for the words in

”a quick brown fox jumps over the lazy dog”

Try this example on
https://www.cs.usfca.edu/~galles/visuali
zation/AVLtree.html

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

50

a quick brown…

a

quick

brown

+2

-1

0

The overall tree is right-
heavy (Right-Left)

parent balance = +2
right child balance = -1

51

a quick brown…

a

quick

brown

+2

-1

0

1. Rotate right around
the child

52

a quick brown…

a

brown

quick

+2

+1

0

1. Rotate right around
the child

53

a quick brown…

a

brown

quick

+2

+1

0

1. Rotate right around
the child

2. Rotate left around the
parent

54

a quick brown…

brown

quicka

0

00

1. Rotate right around
the child

2. Rotate left around the
parent

55

a quick brown fox…

brown

quicka

0

00
Insert fox

56

a quick brown fox…

brown

quicka

+1

-10
Insert fox

fox 0

57

a quick brown fox jumps…

brown

quicka

+1

-10

Insert
jumps

fox 0

58

a quick brown fox jumps…

brown

quicka

+2

-20

Insert
jumps

fox +1

jumps 0

59

a quick brown fox jumps…

brown

quicka

+2

-20

fox +1

jumps 0

The tree is now left-
heavy about quick (Left-

Right case)

60

a quick brown fox jumps…

brown

quicka

+2

-20

fox +1

jumps 0

1. Rotate left around the
child

61

a quick brown fox jumps…

brown

quicka

+2

-20

jumps -1

fox 0

1. Rotate left around the
child

62

a quick brown fox jumps…

brown

quicka

+2

-20

jumps -1

fox 0

1. Rotate left around the
child

2. Rotate right around
the parent

63

a quick brown fox jumps…

brown

jumpsa

+1

00

fox 0 quick 0

1. Rotate left around the
child

2. Rotate right around
the parent

64

a quick brown fox jumps over…

brown

jumpsa

+1

00

fox 0 quick 0

Insert over

65

a quick brown fox jumps over…

brown

jumpsa

+2

+10

fox 0 quick -1

Insert over

over 0

66

a quick brown fox jumps over…

brown

jumpsa

+2

+10

fox 0 quick -1

over 0

We now have a Right-
Right imbalance

67

a quick brown fox jumps over…

brown

jumpsa

+2

+10

fox 0 quick -1

over 0

1. Rotate left around the
parent

68

a quick brown fox jumps over…

jumps

quickbrown

0

-10

a 0 fox 0 over 0

1. Rotate left around the
parent

69

a quick brown fox jumps over the…

jumps

quickbrown

0

-10

a 0 fox 0 over 0

Insert the

70

a quick brown fox jumps over the…

jumps

quickbrown

0

00

a 0 fox 0 over 0

Insert the

the 0

71

a quick brown fox jumps over the
lazy…

jumps

quickbrown

0

00

a 0 fox 0 over 0

Insert lazy

the 0

72

a quick brown fox jumps over the
lazy…

jumps

quickbrown

+1

-10

a 0 fox 0 over -1

Insert lazy

the 0

lazy 0

73

a quick brown fox jumps over the
lazy dog

jumps

quickbrown

+1

-10

a 0 fox 0 over -1

Insert dog

the 0

lazy 0

74

a quick brown fox jumps over the
lazy dog!

jumps

quickbrown

0

-1+1

a 0 fox -1 over -1

Insert dog

the 0

lazy 0dog 0

AVL trees

A balanced BST that maintains balance by rotating the tree
● Insertion: insert as in a BST and move upwards from the inserted node,

rotating unbalanced nodes
● Deletion (in book if you're interested): delete as in a BST and move

upwards from the node that disappeared, rotating unbalanced nodes

Worst-case (it turns out) 1.44log n, typical log n
comparisons for any operation – very balanced. This means
lookups are quick.
● Insertion and deletion can be slower than in a naïve BST, because you

have to do a bit of work to repair the invariant

Look in Haskell compendium (course website) for
implementation
Visualisation:
https://www.cs.usfca.edu/~galles/visualization/AVLtree.ht
ml

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

