
Binary search trees
(chapters 18.1 – 18.3)
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Binary search trees

In a binary search tree (BST), every node is 
greater than all its left descendants, and 
less than all its right descendants
(recall that this
is an invariant) owlowl
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Searching in a BST

Finding an element in a BST is easy, 
because by looking at the root you can 
tell which subtree the element is in
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lemur must be
in left subtree

of owl

lemur must be
in right subtree

of hamster



  

Searching in a binary search tree

To search for target in a BST:
● If the target matches the root node's data, we've 

found it
● If the target is less than the root node's data, 

recursively search the left subtree
● If the target is greater than the root node's data, 

recursively search the right subtree
● If the tree is empty, fail

A BST can be used to implement a set, or 
a map from keys to values



  

Inserting into a BST

To insert a value into a BST:
● Start by searching for the value
● But when you get to null (the empty tree), make a 

node for the value and place it there
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Deleting from a BST

To delete a value into a BST:
● Find the node containing the value
● If the node is a leaf, just remove it
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To delete wolf,
just remove

this node from
the tree 



  

Deleting from a BST, continued

If the node has one child, replace the node 
with its child
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To delete penguin,
replace it in the
tree with wolf



  

Deleting from a BST

To delete a value from a BST:
● Find the node
● If it has no children, just remove it from the tree
● If it has one child, replace the node with its child
● If it has two children...?

Can't remove the node without removing its 
children too!



  

Deleting a node with two children

Delete the biggest value from the node's left 
subtree and put this value [why this one?] 
in place of the node we want to delete

Delete owl
by replacing it
with monkey

Delete
monkeyhorsehorse
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Deleting a node with two children

Delete the biggest value from the node's left 
subtree and put this value [why this one?] 
in place of the node we want to delete

The root is
now monkey
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Deleting a node with two children

Here is the most complicated case:
To delete

monkey, replace
it by lemur
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But lemur has a
child! Put horse

where lemur was



  

Deleting a node with two children

Here is the most complicated case:
To delete

monkey, replace
it by lemur
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apeape

hamsterhamster

But lemur has a
child! Put horse

where lemur was



  

Deleting a node with two children

Here is the most complicated case:
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A bigger example

What happens if we delete
farmer? is? cow? rat?



  

Deleting a node with two children

Deleting rat, we replace it with priest; 
now we have to delete priest which has a 
child, morn



  

Deleting a node with two children

Find and delete the biggest value in the left 
subtree and put that value in the deleted 
node
● Using the biggest value preserves the 

invariant (check you understand why)
● To find the biggest value: repeatedly 

descend into the right child until you find 
a node with no right child

● The biggest node can't have two children, 
so deleting it is easier



  

Complexity of BST operations

All our operations are O(height of tree)
This means O(log n) if the tree is 
balanced, but O(n) if it's unbalanced (like 
the tree on the right)
● how might we get

this tree?

Balanced BSTs add an
extra invariant that makes
sure the tree is balanced
● then all operations are O(log n)



  

Summary of BSTs

Binary trees with BST invariant
Can be used to implement sets and maps
● lookup: can easily find a value in the tree
● insert: perform a lookup, then put the new value at the 

place where the lookup would terminate
● delete: find the value, then remove its node from the tree – 

several cases depending on how many children the node has

Complexity:
● all operations O(height of tree)
● that is, O(log n) if tree is balanced, O(n) if unbalanced
● inserting random data tends to give balanced trees, 

sequential data gives unbalanced ones



  

Tree traversal

Traversing a tree means visiting all its 
nodes in some order
A traversal is a particular order that we 
visit the nodes in
Three common traversals: preorder, 
inorder, postorder
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Preorder traversal
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Visit root node, then left subtree, then 
right (root node first)
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Postorder traversal
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Visit left subtree, then right, then root 
node (root node last)
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Inorder traversal

hamsterhamster
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Visit left subtree, then root node, then 
right (root node in middle)

Inorder traversal
of a BST gives you

the nodes in
ascending order!



  

In-order traversal – printing

void inorder(Node<E> node) {
  if (node == null) return;
  inorder(node.left);
  System.out.println(node.value);
  inorder(node.right);
}
But nicer to define an iterator!
Iterator<Node<E>> inorder(Node<E> 
node);
See 17.4



AVL trees
(chapter 18.4)



  

Balanced BSTs: the problem

The BST operations take O(height of tree), so 
for unbalanced trees can take O(n) time



  

Balanced BSTs: the solution

Take BSTs and add an extra invariant 
that makes sure that the tree is balanced
● Height of tree must be O(log n)
● Then all operations will take O(log n) time

One possible idea for an invariant:
● Height of left child = height of right child

(for all nodes in the tree)
● Tree would be sort of “perfectly balanced”

What's wrong with this idea?



  

A too restrictive invariant

Perfect balance is too restrictive!
Number of nodes can only be 1, 3, 7, 15, 
31, ... owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

hamsterhamster

pandapanda



  

AVL trees – a less restrictive invariant

The AVL tree is the first balanced BST 
discovered (from 1962) – it's named after 
Adelson-Velsky and Landis
It's a BST with the following invariant:
● The difference in heights between the left and 

right children of any node is at most 1

This makes the tree's height O(log n), so 
it's balanced



  

Example of an AVL tree
(from Wikipedia)

12 23 54 76

9 14 19 67

50

17 72

Left child height 2
Right child height 1Left child height 2

Right child height 2

Left child height 1
Right child height 0



  

Why are these not AVL trees?



  

Why are these not AVL trees?

Left child height 0
Right child height 8



  

Why are these not AVL trees?

Left child height 1
Right child height 3



  

Rotation

Rotation rearranges a BST by moving a 
different node to the root, without 
changing the BST's contents

(pic from Wikipedia)



  

Rotation

We can strategically use rotations to 
rebalance an unbalanced tree.
This is what most balanced BST variants 
do!

Height of 4

Height of 3



  

AVL insertion

Start by doing a BST insertion
● This might break the AVL (balance) invariant

Then go upwards from the newly-inserted 
node, looking for nodes that break the 
invariant (unbalanced nodes)
Whenever you find one, rotate it
● Then continue upwards in the tree

There are several cases depending on how 
the node became unbalanced



  

Case 1: a left-left tree

50

c

25

ba

Each pink triangle
represents an

AVL tree
with height k

The purple represents
an insertion that has
increased the height

of tree a to k+1



  

Case 1: a left-left tree

50

c

25

ba

Height kHeight k+2

Left height minus
right height = 2:

invariant broken!



  

Case 1: a left-left tree

50

c

25

ba

This is called a
left-left tree

because both the root and
the left child are deeper

on the left

To fix it we do a
right rotation



  

Balancing a left-left tree, afterwards

50

c

25

b

a

Height k+1 Height k+1

Invariant
restored!



  

Case 2: a right-right tree

25

a

50

b c

Mirror image of left-left tree
Can be fixed with

left rotation



  

Case 3: a left-right tree

50

c

25

ba

Height kHeight k+2

Left height minus
right height = 2:

invariant broken!



  

Case 3: a left-right tree

50

c

25

ba We can't fix this with
one rotation

Let's look at b's
subtrees b

L
 and b

R



  

Case 3: a left-right tree

50

c

25

a

Rotate 25-subtree to the left

40

bRbL

Height k-1



  

Case 3: a left-right tree

50

c
25

a

We now have a left-left tree!
So we can fix it by

rotating the whole tree
to the right

40

bR

bL

Height k+2 Height kHeight k+2

Height k+1



  

Case 3: a left-right tree

50

c

25

a

40

bRbL

Balanced!
Notice it works whichever

of b
L
 and b

R
 has the

extra height



  

Case 4: a right-left tree

25

a

50

b c

Mirror image of
left-right tree



  

Four sorts of unbalanced trees

Left-left (height of left-left grandchild = 
k+1, height of left child = k+2, height of 
right child = k)
● Rotate the whole tree to the right

Left-right (height of left-right grandchild 
= k+1, height of left child = k+2, height of 
right child = k)
● First rotate the left child to the left
● Then rotate the whole tree to the right

Right-left and right-right: symmetric



  

The four cases

(picture from Wikipedia)
The numbers in the
diagram show the balance
of the tree: left height
minus right height
To implement this
efficiently, record the
balance in the nodes and
look at it to work out
which case you're in
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A bigger example
(slides from Peter Ljunglöf )

Let's build an AVL tree for the words in

”a quick brown fox jumps over the lazy dog”

Try this example on 
https://www.cs.usfca.edu/~galles/visuali
zation/AVLtree.html

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
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a quick brown…

a

quick

brown

+2

-1

0

The overall tree is right-
heavy (Right-Left)

parent balance = +2
right child balance = -1
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a quick brown…

a

quick

brown

+2

-1

0

1. Rotate right around 
the child
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a quick brown…

a

brown

quick

+2

+1

0

1. Rotate right around 
the child
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a quick brown…

a

brown

quick

+2

+1

0

1. Rotate right around 
the child

2. Rotate left around the 
parent
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a quick brown…

brown

quicka

0

00

1. Rotate right around 
the child

2. Rotate left around the 
parent
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a quick brown fox…

brown

quicka

0

00
Insert fox
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a quick brown fox…

brown

quicka

+1

-10
Insert fox

fox 0
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a quick brown fox jumps…

brown

quicka

+1

-10

Insert 
jumps

fox 0
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a quick brown fox jumps…

brown

quicka

+2

-20

Insert 
jumps

fox +1

jumps 0
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a quick brown fox jumps…

brown

quicka

+2

-20

fox +1

jumps 0

The tree is now left-
heavy about quick (Left-

Right case)
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a quick brown fox jumps…

brown

quicka

+2

-20

fox +1

jumps 0

1. Rotate left around the 
child
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a quick brown fox jumps…

brown

quicka

+2

-20

jumps -1

fox 0

1. Rotate left around the 
child
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a quick brown fox jumps…

brown

quicka

+2

-20

jumps -1

fox 0

1. Rotate left around the 
child

2. Rotate right around 
the parent
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a quick brown fox jumps…

brown

jumpsa

+1

00

fox 0 quick 0

1. Rotate left around the 
child

2. Rotate right around 
the parent
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a quick brown fox jumps over…

brown

jumpsa

+1

00

fox 0 quick 0

Insert over
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a quick brown fox jumps over…

brown

jumpsa

+2

+10

fox 0 quick -1

Insert over

over 0
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a quick brown fox jumps over…

brown

jumpsa

+2

+10

fox 0 quick -1

over 0

We now have a Right-
Right imbalance
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a quick brown fox jumps over…

brown

jumpsa

+2

+10

fox 0 quick -1

over 0

1. Rotate left around the 
parent
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a quick brown fox jumps over…

jumps

quickbrown

0

-10

a 0 fox 0 over 0

1. Rotate left around the 
parent
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a quick brown fox jumps over the…

jumps

quickbrown

0

-10

a 0 fox 0 over 0

Insert the
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a quick brown fox jumps over the…

jumps

quickbrown

0

00

a 0 fox 0 over 0

Insert the

the 0



71

a quick brown fox jumps over the
lazy…

jumps

quickbrown

0

00

a 0 fox 0 over 0

Insert lazy

the 0
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a quick brown fox jumps over the
lazy…

jumps

quickbrown

+1

-10

a 0 fox 0 over -1

Insert lazy

the 0

lazy 0
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a quick brown fox jumps over the
lazy dog

jumps

quickbrown

+1

-10

a 0 fox 0 over -1

Insert dog

the 0

lazy 0
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a quick brown fox jumps over the
lazy dog!

jumps

quickbrown

0

-1+1

a 0 fox -1 over -1

Insert dog

the 0

lazy 0dog 0



  

AVL trees

A balanced BST that maintains balance by rotating the tree
● Insertion: insert as in a BST and move upwards from the inserted node, 

rotating unbalanced nodes
● Deletion (in book if you're interested): delete as in a BST and move 

upwards from the node that disappeared, rotating unbalanced nodes

Worst-case (it turns out) 1.44log n, typical log n 
comparisons for any operation – very balanced. This means 
lookups are quick.
● Insertion and deletion can be slower than in a naïve BST, because you 

have to do a bit of work to repair the invariant

Look in Haskell compendium (course website) for 
implementation
Visualisation: 
https://www.cs.usfca.edu/~galles/visualization/AVLtree.ht
ml

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
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