
Stacks and queues
(chapters 6.6, 15.1, 15.5)

So far...

Complexity analysis
● For recursive and iterative programs

Sorting algorithms
● Insertion, selection, quick, merge,

(intro, dual-pivot quick, natural merge, Tim)

Binary search, dynamic arrays
Rest of course: lots of data structures!

Stacks

A stack stores a sequence of values
Main operations:
● push(x) – add value x to the stack
● pop() – remove the most-recently-pushed value

from the stack

LIFO: last in first out
● Value removed by pop is always the one that was

pushed most recently

Stacks

Analogy for LIFO: stack of plates
● Can only add or remove plates at the top!
● You always take off the most recent plate

Stacks

More stack operations:
● is stack empty? – is there anything on the stack?
● top() – return most-recently-pushed (“top”) value

without removing it

Stacks are used everywhere
● Example: call stack – whenever you call a function

or method, the computer has to remember where
to continue after the function returns – it does
this by pushing where it had got to onto the call
stack

Example: balanced brackets

Given a string:
“hello (hello is a greetng [sic] {“sic” is used when
quoting a text that contains a typo (or archaic
[and nowadays wrong] spelling) to show that the
mistake was in the original text (and not
introduced while copying the quote)})”

Check that all brackets match:
● Every opening bracket has a closing bracket
● Every closing bracket has an opening bracket
● Nested brackets match up: no “([)]”!

Maybe many sorts of brackets!

Algorithm

Maintain a stack of opened brackets
● Initially stack is empty
● Go through string one character at a time
● If we see a non-bracket character, skip it
● If we see an opening bracket, push it
● If we see a closing bracket, pop from the stack

and check that it matches
– e.g., if we see a “)”, check that the popped value is a “(“

● When we get to the end of the string, check that
the stack is empty

Try it!

Algorithm

Maintain a stack of opened brackets
● Initially stack is empty
● Go through string one character at a time
● If we see a non-bracket character, skip it
● If we see an opening bracket, push it
● If we see a closing bracket, pop from the stack

and check that it matches
– e.g., if we see a “)”, check that the popped value is a “(“

● When we get to the end of the string, check
that the stack is empty

Try it!

If stack is not
empty at end,

an opening bracket
is unclosed

If stack is empty
on pop, there is
a closing bracket

without an
opening one

If it doesn't match,
the structure

of the brackets
is wrong

Implementing stacks in Haskell

type Stack a = ???
push :: a Stack a Stack a→ →
pop :: Stack a Stack a→
top :: Stack a a→
empty :: Stack a Bool→

[better API:
pop :: Stack a Maybe (a, Stack a)→]

Stacks are lists!

type Stack a = [a]
push :: a Stack a Stack a→ →
push x xs = x:xs

pop :: Stack a Stack a→
pop (x:xs) = xs

top :: Stack a a→
top (x:xs) = x

empty :: Stack a Bool→
empty [] = True
empty (x:xs) = False

Stacks are lists!

type Stack a = [a]
push :: a Stack a Stack a→ →
push x xs = x:xs

pop :: Stack a Stack a→
pop (x:xs) = xs

top :: Stack a a→
top (x:xs) = x

empty :: Stack a Bool→
empty [] = True
empty (x:xs) = False

Note: in
functional languages

you usually don't bother
with a special stack

datatype, you just use
lists instead

Implementing stacks in Java

Idea: use a dynamic array!
● Push: add a new element to the end of the array
● Pop: decrease size by 1
● Empty?: is size 0?

Complexity: all operations have amortised
O(1) complexity
● Means: n operations take O(n) time
● We don't study amortised complexity in this course
● Although a single operation may take O(n) time, an

“expensive” operation is always balanced out by a
lot of earlier “cheap” operations

Stacks using dynamic arrays

push(1); push(2)

push(3)

pop()

1 2 top = 1

1 2 3 top = 2

1 2 3 top = 1, return 3

Queues

A queue is similar to a stack:
● enqueue(x) – add value x to the queue
● dequeue() – remove earliest-added value

Difference: FIFO (first in first out)!
● Value dequeued is always the oldest one that's

still in the queue

Used all over the place – not quite as
often as stacks
● Example: controlling access to shared resources

in an operating system, e.g. a printer queue

Queues

Analogy for FIFO: a queue!
● The first person to enter the queue is the first

person to leave

Implementing queues in Java

One idea: a dynamic array as before
● enqueue(x): add x to the end of the dynamic array
● dequeue(): return first element of array...

...but how to remove it?

One option for dequeue:
● copy the contents of the array down one index...

a[1] to a[0], a[2] to a[1], etc.

But this gives O(n) performance for
dequeue! We want O(1).

Bounded queues

Let's solve a simpler problem first:
bounded queues
A bounded queue is a queue with a fixed
capacity, e.g. 5
● The queue can't contain more than 5 elements at

a time
● You typically choose the capacity when you create

the queue

Attempt two

Implement a queue as an array...
...but keep two indices into the array:
● rear: the index where we enqueue elements
● front: the index where we dequeue elements
● Compare with stacks, where we had an array plus

one index (the top of the stack)

To enqueue an element, increment rear
and put the new element there
To dequeue, take the element from front
and increment front

An example queue

What is the contents of this queue?

(Important first step in understanding a
data structure: understand how its
representation works. First step when
designing a data structure too!)

front

rear

0
1

3
4

✽
+

/

–
2

A

Queue contains
everything between

front and rear: + / - A

A longer example

Enqueue *, +, /, -, A, dequeue two elements:

N.B.: initialise rear to -1 so that initially
[front..rear] is empty!

front

rear

0

1

2

3

4

front
rear

0

1

2

3

4

✽
rear

0

4

✽
+

front

1

2

3

A longer example

Enqueue *, +, /, -, A, dequeue two elements:

rear

0

4

✽
+
/

front

1

2

3 rear

0

1

3

4

✽
+
/
–

2

front front

rear

0

1

3

4

✽
+
/
–

2

A

A longer example

Enqueue *, +, /, -, A, dequeue two elements:

But: what happens if we want to
enqueue another value now?

front

rear

0

1

3

4

✽
+
/
–

2

A

front

rear

0

1

2

3

4

+
/
–
A

front

rear

0

1

2

3

4

/
–
A

Queues as circular arrays

Problem: when rear reaches the end of
the array, we can't enqueue anything else
Idea: circular array
● When rear reaches the end of the array, put the

next element at index 0 – and set rear to 0
● Next after that goes at index 1
● front wraps around in the same way

An example circular array

Here, front comes after
rear! Array is circular:

queue contains * + / - A

Queue contains
everything between

front and rear: * + / -

Continuing the example

Starting where we left off, enqueue B and
C:

Now the queue is full!

front

rear

0

1

2

3

4

/
–
A

front

rear 0

1

2

3

4

B

/
–
A

front

rear

0

1

2

3

4

B

/
–
A

C

Bounded queues

Our idea of circular arrays works just fine
as a bounded queue
● Queue with a fixed capacity, decided when you

create the queue
● O(1) enqueue, dequeue (amortised)

To turn it into an unbounded queue, let's
use the idea of a dynamic array:
● When the queue gets full, double its size

Reallocation

Allocate new array
Repeatedly dequeue element
from old queue and enqueue
in new queue
(don't just copy array! Why?)

0

1

2

3

4

5

6

7

8

9

/
-
A
B
C

front

rear

0

1

2

3

4

/
–
A

B
C
/
–
A

B
C Reallocate

rear

front

Reallocation, how not to do it

Wrong!
The new queue would contain /, -,
A, followed by 5 mystery elements
and then B, C.

0

1

2

3

4

5

6

7

8

9

B
C
/
-
A

front

rear

0

1

2

3

4

/
–
A

B
C
/
–
A

B
C

Reallocate

rear

front

Summary: queues as arrays

Maintain front and rear indexes
● Enqueue elements at rear, remove from front

Circular array
● front and rear wrap around when they reach the end

Idea from dynamic arrays
● When the array gets full, allocate a new one of twice

the size

Important implementation note!
● To tell when array is full, need an extra variable to

hold the current size of the queue

Queues in Haskell

type Queue a = ???
enqueue :: a Queue a Queue a→ →
dequeue :: Queue a (a, Queue a)→
empty :: Queue a Bool→

[better API:
dequeue :: Queue a Maybe (a, Queue a)→]

One possibility: using a list

type Queue a = [a]
enqueue :: a Queue a Queue a→ →
enqueue x xs = xs ++ [x]

dequeue :: Queue a (a, Queue a)→
dequeue (x:xs) = (x, xs)

empty :: Queue a Bool→
empty [] = True
empty (x:xs) = False

But enqueue
takes O(n)

time!

A queue using two stacks

The idea: have two stacks
● The in stack
● The out stack

To enqueue a value, add it to the in stack
To dequeue a value, pop it from the out stack
If the out stack is empty, move the in stack to
the out stack – but reverse the order of the
elements!
● while (!out.empty()) { x = out.pop(); in.push(x); }

● Reversing the stack is what gets you FIFO instead of
LIFO behaviour

Queues in Haskell

Represent a queue as a pair of lists
● (xs, ys)
● To enqueue an element, add it to ys
● To dequeue, remove an element from xs
● If xs is empty, replace it with the reverse of ys

Formally, the queue (xs, ys) represents
the sequence xs ++ reverse ys
● For example, ([1,2,3], [6,5,4]) represents

the queue 1 2 3 4 5 6

Complexity of this

Look at the lifecycle of an element as it goes
through the queue:
● First it gets enqueued, i.e. pushed to the in stack
● At some point it gets popped from the in stack and

pushed to the out stack
● Eventually it gets dequeued, i.e. popped from the out

stack

Total of 4 push/pop operations, each one takes
constant time
● For a sequence of operations, total time is proportional to

number of enqueue operations
● O(1) amortised time per operation, even though a single

dequeue may take O(n) time if the in stack is empty!

Double-ended queues

So far we have seen:
● Queues – add elements to one end and remove them

from the other end
● Stacks – add and remove elements from the same end

In a deque, you can add and remove elements
from both ends
● add to front, add to rear
● remove from front, remove from rear

Good news – circular arrays support this easily
● For the functional version, have to be a bit careful to

get the right complexity – see exercise

In practice

Your favourite programming language should have
a library module for stacks, queues and deques
● Java: use java.util.Deque<E> – provides addFirst/Last,
removeFirst/Last methods

● For using as a queue, provides add = addFirst, remove =
removeLast

● For using as a stack, provides push = addFirst, pop =
removeFirst

● Note: Java also provides a Stack class, but this is deprecated –
don't use it

● Haskell: instead of a stack, just use a list
● For queues and deques, use Data.Sequence – a general-

purpose sequence data type

Stacks, queues, deques – summary

All three extremely common
● Stacks: LIFO, queues: FIFO, deques: generalise both
● Often used to maintain a set of tasks to do later
● Imperative language: circular arrays, O(1) complexity
● Functional language: stacks are lists, deques can be

implemented as a pair of lists with O(1) amortised complexity –
not quite as efficient

Data structure design hint: always think about what
a data structure represents!
● In this case, “if I have a stack or queue implemented in such and

such way, what sequence of values is it supposed to contain?”
● See “An example circular array” and “Queues in Haskell” slides
● It gives you a handle on why the data structure works

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

