
Imperative Programming
Slide Series 1

Content

Object orientation/object oriented programming/UML
Imperative programming and state
By value/By reference
Side effects/Referential transparency
Imperative/Declarative style
Declarative style in imperative programs
Correctness
Testing
Linked data structures

The Object Oriented Paradigm

Program seen as a collection of interacting
objects
● An "object model" of some problem
● Close connection between problem and program
● No object model => Not an object oriented program

UML

Unified Modelling Language, graphical
language to describe different aspects of an
OO-model

: Store

: Shelf

: Game

: ShelfItem

: Movie

1
n n1

UML Class diagram

UML, cont

Possible to use UML in formal ways, but we
don't

We use it as a shorthand, to communicate
principles and ideas at a higher level (than
code)
● Using a very small subset of symbols (mostly from

class diagrams)

Object Oriented Programming

Using programming techniques designed to
support creation and execution of object
models

Programming techniques include features such as data
abstraction, encapsulation, messaging, modularity,
polymorphism, and inheritance

Imperative Programming

Imperative programming is a programming
paradigm that describes computation in
terms of statements that change a program
state
// Wikipedia

● Describes how thing should be done!
● Contrast: Declarative programming, what to be

accomplished (Functional programming, Logic
programming, ...)

State

We do imperative OO programming (in Java)
● We have an object model
● We have objects
● Objects have state

State = all the stored information, at a given
point in time (in this course: the values for all
non-local variables at any time)

Variables

In functional programming variables bound to
values (will never change)

In imperative programming variables
(attributes) are names of memory location,
like boxes (will change content)

Statements

Imperative programs are built up by
(sequences of) statements (in Java
terminated by ;)
● The smallest standalone element

○ Example simple stmts: return; System.out.
println();

○ Example compound: if, switch, while, for
○ Denotes an action (not a value)

● The sequence (ordering) often matters

No statements in (pure) functional programming, no
ordering concerns (can use do-notation in Haskell)

Expressions

Statement built up by expression
● An expression denote a value

// Expressions
true && false || 1 > 0;
1 + 4.5
"hej".length();
x = y = 1; // Part of statement

In Java all values have types ... so an expression...

State is Problematic

Put simple: State means we have many,
many, ... boxes
● Boxes hold the (partial) result and information how to

proceed with the calculation
● During execution the content of the boxes will

change
● Have to to put correct value of the correct type in the

correct box in the correct order...

... this is very hard in any non-trivial
application.
● If any mistake program is in invalid state

In Fact it's Even Worse

The boxes can have references to other
boxes (with references to yet other boxes ...)

We possible have shared state (alias problem)
"If two variables contain references to the same object, the state of the
object can be modified using one variable's reference to the object, and
then the altered state can be observed through the reference in the other
variable." //JLS 4.3.1

SomeRefType i;

SomeRefType j;

j.setValue(...)
!!!

Value and Reference Semantics*

The possibility of "reference or not" have
impact on the semantics (the meaning)

Value semantics (by value)
● No shared state (copies creates)

Reference semantics (by reference)
● Shared state

Recurring question: Is this by value or by reference?

This slide is
special.. why???

Example: By Value or By Reference
Integer i = new Integer(4)
Integer j = new Integer(4)
if(i == j){
}
False by reference
semantics

int i = 4
int j = 4
if(i == j){
}
True by value semantics

How about this?

if (i <= j){

}

Call by Value

Java have references but all calls (and
assignments) are by value i.e. a value is
copied from a variable to another

4 4

int i = 4;
int j;
// After this we have 2 4's
j = i;

i

Integer i = 4;
Integer j;
//After this we have 2
//references
j = i;

j ji

4

copy copy

Call by Value, cont

Call by value of methods have implications

Date d = new Date();
o. doIt(d)

public void doIt(Date d){
d.set(...);

} d

d
25/6

c
o
p
y

Date object
outside
method
modified

Out Parameters*

Normally method parameters should be
"read only"
● If not, document (i.e. "Call will modify argument...")
● Confusing if caller uses reference after method call,

invisible state change
● If need more return values, create object to return

(don't use outparam as return)

... ok usage
● Passing an array/Collection to be manipulated by

method is ok

Side Effects

Side effect = In addition to compute a value
something more happens (state modified)

Heavy use of side effects in imperative programming

List<Integer> is = ...

// Add a value and modify list
boolean b = is.add(123);

// Assignment causes side effect
x = 1;

Referential Transparency*

// Always 0 in functional programming
putStrLn(f(123) - f(123))

// In imperative OO ???
System.out.println(o.f(123) - o.f(123))

Imperative languages are not referentially
transparent (i. e. not always same result for
same argument)
● Because of possible side effects
● Makes it hard to reason about imperative code

Mutator and Accessors*

Make explicit which methods have side
effects

Accessors-method (getters)
● Never change state of object, no side effects
● Used to retrieve information (state or calculated)
● ... more later

Mutator-method (setters)
● Changes state of object
● Don't return information about object (but possible

other result, boolean common)

Imperative Style vs Declarative*

//Naive Haskell power function (declarative)
pow a 0 = 1
pow a b = a * pow a (b-1)

// Same in imperative style
public int pow(int a, int b){
 int result = 1; int i = 0; // Bad style
 while(i < b){

result *= a;
 i++;
 }
 return result;
}

Describe step
by step.
How to prove
correctness of
this?

Like an
equation.
How to prove
correctness of
this?

Declarative Style Proof

Prove: pow a b = ab

By induction
● Base: pow a 0 = 1 = ab (b = 0)
● Assume: pow a b = ab (b > 0)

Show: pow a b+1 = ab+1

 pow a b+1 = a * pow a ((b+1) -1) =
 a * pow a b = a * ab = ab+1

Imperative Style Proof

Prove: pow(a,b) = ab

By use of loop invariants (boolean expressions)

● Show invariant is true prior to first iteration
● If it's true before an iteration show it's true before next
● At termination deduce result (or something stronger)

from (the true) invariant (an implication)

Imperative Style Proof, cont

Invariant: i <= b && result == ai

// If b == 0 trivially true, assume b > 0
public int pow(int a, int b){
 int result = 1; int i = 0;

while(i < b){
 result *= a;

 i++;
 }
 return result;
}

Invariant true prior to first iteration
i < b && i == 0 && result == 1 =>
i <= b && result == ai

Assume invariant true before iteration.
result *= a; => result == a(i+1) (inv. false)
i++; (inv. true)
Invariant true after loop

At termination (invariant still holds): i <= b && result == ai && !(i < b)
=> i == b && result == ai => result == ab

Hard Parts of Imperative Proofs

The negation of the guard (i >= b) and the
invariant should imply (=>) the desired
outcome (result == ab)

● What's is the desired outcome (easy in this case)?
● How to find invariant
● How to keep invariant but eventually terminate the

loop (how to eventually get the guard false)?

Limitations of Imperative Style Proof

No side effects
● No instance variables

Must have single entry and exit point
● No break, continue or return

And more...

Declarative Style in Imperative
Language
// Java going declarative
public int powR(int a, int b){

if(b == 0){
 return 1;
 }else{
 return a * powR(a, b-1);
 }
}

Possible but ...
● Watch out for StackOverflowException
● Should prefer tail recursion (powR not tail recursive)
● Even so; Tail call optimization possible not supported

(depends on JVM/JIT)

Tail Recursion*

// Tail recursive version of pow, must init result to 1
public int powTail(int a, int b, int result){

if(b == 0){
 return result;
 }else{
 // Tail recursive, nothing to do after call returns

return powTail(a, b-1, result * a);
 }
}

If tail call optimization, this should run as fast as
imperative version and no StackOverflowException

 Accumulator parameter holding the result

Tail Recursion to Imperative Style*

Tail recursion easy to convert to imperative
loop

public f(x) {

if (p(x)){

return g(x);

} else{

return f(h(x));

}

}

public f(x) {

while (!p(x)) {

x = h(x);

}

return g(x);

}

If many base cases => negate disjunction of base cases

We run h(x) possible
many times and finally
g(x) on result

Proving Tail Recursion

As demonstrated tail recursion is a loop...

... so sadly have to use invariants for the
accumulator parameter

Proof vs Reasoning

Imperative proofs quickly becomes very
complicated ... (one example later)

... but using the techniques for reasoning is
useful
● Will gain understanding
● Will improve code
● If completely impossible to imagine any kind of proof

when inspecting the code ... rework it!
● Use natural language for reasoning

Testing

Proving difficult, tedious, ...
Reasoning informally using proof techniques
possible...

...other attempt: Testing...

"program testing can be a very effective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence."//E. Dijkstra

Unit Testing

Testing the smallest units (parts) of the
program
● I.e. we test classes

One test for each class, testing all public
methods
● If method private, normally not in test. If in need,

change to public and back (bad.., just for now)
● If method void, need to inspect state (possible extra

method getNNN())

JUnit*

Test framework for Java
● We have a class (class under test, CUT)
● Write another "test"-class, testing all (public) methods

in CUT
○ Test class usually has one test method for each method in CUT

● Let JUnit run the test class
● JUnit will report any failures

JUnit part of Eclipse (a plugin)
● Separate test code (test classes), use a test-source

folder in Eclipse project

Organizing Test Code

Always keep test code separate from
application code
● Use source folder "test" in Eclipse
● Use same package structure as application, more to

come...

Code Coverage

"Code coverage is a measure used in software testing. It
describes the degree to which the source code of a
program has been tested." //Wikipedia

Possible to see how much of code is run during tests,
high percentage good (90% or more)

Many tools, ECLEmma a plugin for Eclipse

Other Benefits of Testing

Confidence in doing changes, just re-run the
tests!
● All passed tests should pass after any modification

Documentation
● Use very descriptive names for test methods

NOTE: Testing is a complicated "art", we'll just scratch the
surface

Linked Data Structures

We'll use a lot of linked structures (i.e.
collections of objects connected by
references)

5 7 13 2

Node-object
(so need a
Node class)

A linked list
with
positive
integers
(attribute of
type int in
object) "next" reference

(an attribute of
type Node in
object)

The Node Class

// Class for objects used in a linked data structure
public class Node {

private int data;
private Node next; // The next reference

// Better to set data also, this is just for now
public Node(Node next){

this.next = next;
}
// set/get methods

}

The List Class

// Class for managing the linked Node-structure
public class List {

// Reference to the first node, all we need
private Node head;

public void add(){
Node n = new Node(head);
head = n;

}
}

List

Traversing a Linked List*

5 7 13 2

pos = head; // Init pointer
while(pos != null){

// Do something with node
// Move pointer to next
pos = pos.next;

}

Node head;
//A single variable

Can't change head
variable, if so whole
structure lost

Node objects

Node pos; // Need an extra "pointer reference", a single variable

pos == null

An Initialization Method

// Using classes from previous slides
public class List {

...
public void init() {

Node pos = this.head;
while (pos != null) {

pos.setData(1);
pos = pos.getNext();

}
}

}

How to prove this correct (at termination all nodes have
data == 1)?

Proof of Init

We must prove for all nodes data == 1
Hard to find loop invariant (we assume list is not
circular)..?

We use the reachability function Rnext (u)
● a function returning a set of nodes reachable from u.

Axiom (v and u are nodes):
 v ∈ Rnext (u) ⇔ (v == u || (u.next != null) && v ∈ Rnext (u.

next)))
Assume null.next = null (no loss of generality)

Proof of Init, cont

Invariant: ∀v ∈ Rnext (head) : (pos != null && v ∈ Rnext
(pos)) || v.data == 1

public void init() {
Node pos = this.head;
while (pos != null) {

pos.setData(1);
pos = pos.getNext();

}
}

pos != null && v in
R(pos) is true
pos.data != 1 (but
it's an disjunction
so true)

At loop termination (define P(pos) as pos != null, Q(pos) as v ∈ Rnext (pos)). We have;
!P(pos) && ∀v ∈ Rnext (head) : ((P(pos) && Q(pos)) || v.data == 1) =>
∀v ∈ Rnext (head) : (!P(pos) && (P(pos) && Q(pos)) || v.data == 1) =>
∀v ∈ Rnext (head) : (false && Q(pos) || v.data == 1) => ∀v ∈ Rnext (head) : (false || v.data == 1)
∀v ∈ Rnext (head) : v.data == 1

For all nodes v in list; it's possible to reach v via pos or v.data == 1

pos != null && v in
R(pos) or pos.
data == 1 true
(can't reach first
but it has data set
to 1)

First iteration Sec. iteration

If pos == null inv.
still truel

True
before
loop

Trees*

Another linked data structure

7

5

99 2

19

58

root (parent == null)

parent of

child of

node

"left"-reference

children == null

"right"-reference

A Node Class for Trees*

// Class for nodes in a tree
public class Node {

// References to other nodes in tree
private Node parent;
private Node left;
private Node right;

// set/get methods

}

Count Nodes in Tree*

// In Tree class
public int countNodes(){ // Method to get going

return countNodesR(root);
}

// Declarative style counting nodes (imperative hard...).
private int countNodesR(Node node) {

if(node == null){
return 0;

}else {
return 1 + countNodesR(node.left) +

 countNodesR(node.
right);

}
}

Summary

● We are doing imperative OO-programming which
implies state (and statements)

● State is very complex
● References makes it even harder (different

semantics)
● Proving imperative programs is hard

○ Declarative more natural

● We try to reason informally using ideas from the
presented proof techniques

● An alternative to proofs is testing
● Linked data structures are collections of connected

objects

