Parallel Functional Programming
Lecture 3

Mary Sheeran

(with thanks to Simon Marlow and Koen Claessen

for use of slides)

http://www.cse.chalmers.se/edu/course/pfp

Simon Marlow’s landscape for parallel
Haskell

e Parallel
— par/pseq @1
Strategies €2
Par Monad €3
Repa 4

Accelerate Simon

DPH Ha)(l Marlow
e Concurrent lecture ©

— forklO
MVar
STM
async
Cloud Haskell

Using par

You must

pass an unevaluated computation to par
ensure that its value will not be required by the enclosing computation for a while

ensure that the result is shared by the rest of the program

Using par

You must

pass an unevaluated computation to par
ensure that its value will not be required by the enclos ion for a while

ensure that the result is shared by the rest of the prog

Demands an operational understanding of program execution

Eval monad plus Strategies

Eval monad enables expressing ordering between
instances of par and pseq

Strategies separate algorithm from parallelisation
Provide useful higher level abstractions

But still demand an understanding of laziness

A monad for deterministic parallelism

Simon Marlow Ryan Newton Simon Peyton Jones
Microsolt Research, Cambeidge, UK Inkel, Hhadson, MA, LLSA Microsofl Research, Cambridge, UK.
smonmar@microsoft.com ryan.r.nawton@intal com simonp)@microsoft com
Abstract pum inferface, while allowing a impic mentation. We give 2

We prsent 2 mew peogramming moded for delerministic paraliel
oﬁaﬁmnnmmwmmm&luw

explict gramutarity, but allows dymamic constraction of
datafiow networks that ax scheduled at nuntime, while remaining
deterministic and pu. The implementation & based on monadic
conozreacy, which has untl now caly been used 1o stmulate con-
cusTency in fenctional languages, rather than (o prowide paralieBsm.
We prsent the APT with its semantics, and argue that peralie] exe-
cution Is delerministic Furthermon:, we present 2 complele work-
stealing scheduler mplemonted & a 1l Bbrary, and we show
that it performs & east as well as the ex isting pandiel programming
models in Haskell

Haskell’11

formal operational s mantics for the new inkerface.

Our programming model & chosely ®laed Lo a number of oth-
ers; 2 detaled can be found in Section & Probably the
closest miative is pi (Nikhil 2001), a vartant of Haskell that a0
has §-stractemes; the principal differnce with owr mode] is tat the
momad allows us 10 ®&in relemential tnmsparency, which was lost
in pii with the introduction of I-structeres. The Lepet domain of owr
pogl—nﬂm '] m:xtl Is 2&9“ ngizh;-lhlhm. rather

fine m peraliclism (for e katier Data Parad-

el I&Mellﬂ!ﬂjhmm
Our implementation Is based on monadic concurrency (Scholtz
1995), a echnique that has peeviously been wed 1o pood effect 1o
simulaie concurmency i 2 soquential functional knguage (Clacsen

Builds on this idea

FUNCTIONAL PEARLS
A Poor Man's Concurrency Monad

Noen Claessen
Chalmers Universiiy of Technology

cmail: koen@cs.chalmers.se

Abstract

Without adding any primitives to the language. we define a concurrency monad trans
former in Haskell. This allows us to add a limited form of concurrency to any existing
monad. The atomic actions of the new monad are lifted actions of the underlying monad.
Some extra operations. such as fork. to initiate new processes, are provided. We discuss
the implementation. and use some examples to illustrate the usefulness of this construc
tion.

JFP’99 Call this PMC

A Poer Man’s

Con currency
Monad

Koern Cloessen
Without addivg primitives,
we construct o way do Wt

any monad Into a limited,

but vseful concuvrent
sekting

Monads

o abstrachien from computahion

class Moncd m where

(>=:ma-=>Cb.a3mb)> mb
returm : & =5 ma

e We USe special notahon

do a ¢ epr, i erpr, »=\a-
expr, . expr, e\l
be expy, | expry >>=\b->
— ; expry

Writer Monad

* Con pPredue seme output
during computahion

class Monod m = Writer m

wm& 1 S‘l'r\'ng > m ()

o An implementohion covld be :

~type Wa = (a, String)

- instance Morad W where
m»ak =let (a,8)=m
(b,s") = ko
in (b, SHe')
return a = (a, "")

- instance Writer W wWhere
Wl‘h S = (00 s)

- output 2 Wa = String
» output (a,8) = s

Actions

We build actions from +hree

different construetions:
atomie actions, forked.
achons and no-ackon.

dota. Achon m
= Atom (m (Action m))

| Fork (Achion m)
(Achon m)
| Step

We ue constructors:
- general & simple

- expresSsive
See alse Sehole [2].

Continuation

specifies what 1o do with
resolt,

type C a =
(o.— Action) — Achion

porametrize over a moned.:

m C wm Q=

| (o= Action m) - Action m
for seme hype Action +hot
stards for o process,

It is & monad ;

instance Morod (C m) whm,

m»=k =\cont 9> m
(\o.»> k o cont)

rturn a = \cont = cont o

USeful Operations

Some furchiors +at make
life easier.
eTurn a C ma into an Ackion:

action :: C m a > Achon m
achen ¢ = ¢ (\a.-> Stop)

eTlrm an M a into an
(fatonic) C m o :

atom : ma > Cma
atoma m = \cont =

Atom (do a &wm
return (cont &))

* End o process (Hae emphy
process) :
stop it Cmoa
step = \cont = Stop

Fork

Some cperations on fork
o ‘Imperative’ fork:
fork Cmoa > Cm0

¢ = \cont = Fork
(achon ¢) (cont)

¢ ‘Alegebraict or symmetrical
fork .
pr: Cma =» Cma->Cma
par C1 c2 = \cont =
Fork (ct cont) (c2 cont)

ron i Cma =5 m a

this s "net" pessible , due

o typing problems.

We wll define o funchion
rvn @ Cma = wm 0

This means we'll only get
the Stde-effects of +he
Ormputathon,

Round Robin

.
Simple scheduler.

round : [Action mle» m ()
rovnd [1 = return ()
round (p:ps) =
cose p of
-Atom ma. -
do P'{—m
rourd (ps++ Lp'1)
~fork pn p2
round (ps++ [p1,p21)
- Stop -
rourd ps

C is a Monad Trarsformer

C con be made on
instance of Monad Trans,

instance Morod Trans C
where

Uft = atom

All lifted achions become
atomic achons in +he
new &eH\‘rgg.

Example 1: Wnter

We lift every wniter wionod.

instonce Wnter m =>
Writer (€ m) where
wrte S = \ift (write s)
Every un'te ochion (s Now atemie,

oample : CW O

example = do wnte "hcj!“
fork (loop "apa®)
fork (loop “hund")

where
lcop S= do write §

loop S
Wl resvlt in:

e e

ej! apahund apahund apo.

Example 2: Another Uftirg

We con lift writers In a
different way:
instance Writer m =)
Writer (C m) where

write “" = reduen O
wnte (C:s)= do Lft (write [¢))
write s

o unte ackon is now sput
up in afomic achons for eoch
character.

hej! ahpuanadphaupn ...

the Par Monad

Our goal with this work is to find a parallel programming model
that is expressive enough to subsume Strategies, robust enough to
reliably express parallelism, and accessible enough that non-expert
programmers can achieve parallelism with little effort.

The Par Monad

Par is a monad for

parallel computation
data Par

instance Monad Par

Parallel computations
are pure (and hence

runPar :: Par a -> a deterministic)

fork :: pPar () -> Par O forking is explicit

4
data Ivar " results are communicated
hew :: Par (Ivar a) through IVars

get :: Ivar a -> Par a
put :: NFData a => Ivar a -> a -> Par ()

Slide by Simon Marlow

I\Var

a write-once mutable reference cell
supports two operations: put and get

put assigns a value to the IVar, and may only be executed
once per lvar Subsequent puts are an error

get waits until the IVar has been assigned a value, and then
returns the value

the Par Monad

Implemented as a Haskell library
surprisingly little code!
includes a work stealing scheduler
You get to roll your own schedulers!
Programmer has more control than with Strategies
=> |ess error prone?
Good performance (comparable to Strategies)
particularly if granularity is not too small

Par expresses dynamic dataflow

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do

1 <- new

fork (do x <- p; put 1 x)

return 1

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [Db]
parMapM f as = do

ibs <- mapM (spawn . f) as

mapM get ibs

parfib :: Int -> Int -> Par Int

parfib n t
| n <=2 = return 1
| n <=t = return $ sfib n

| otherwise = do
x <- spawn $ parfib (n-1) t
y <- spawn $ parfib (n-2) t
x' <- get x
y' <- get y
return (x' + y’)

Dataflow

e Consider typechecking a set of (non-recursive)
bindings:

* treat this as a dataflow graph:

parInfer :: [(Var,Expr)] -> [(Var,Type)]

parInfer bindings = runPar §$ do
let binders = map fst bindings
ivars <- replicateM (length binders) new
let env = Map.fromlList (zip binders ivars)
mapM (fork . infer env) bindings
types <- mapM get ivars
return (zip binders types)

parInfer :: [(Var,Expr)] -> [(Var,Type)]

parInfer bindings = runPar §$ do
let binders = map fst bindings
ivars <- replicateM (length binders) new
let env = Map.fromlList (zip binders ivars)
mapM (fork . infer env) bindings
types <- mapM get ivars
return (zip binders types)

Create nodes and edges and let the scheduler do the work
No dependency analysis required!

Maximum parallelism for little programmer effort ~ Dynamic parallelism
Very nice ©

Divide and Conquer skeleton

divCong :: NFData sol => (prob -> Bool) -- indivisible?
-> (prob -> [prob]) -- split into subproblems
-> ([s0ol] -> sol) -- join solutions
-> (prob -> sol) -- solve a subproblem

-> (prob -> sol)
divConqg indiv split join f prob
= runPar $ go prob
where
go prob
| indiv prob = return (f prob)
| otherwise = do
sols <- parMapM go (split prob)
return (join sols)

Another D&C skeleton

divConqg :: NFData sol
=> (prob -> Bool) -—- indivisible?
-> (prob -> (prob,prob)) -- split into subproblems
-> (sol -> sol -> sol) —-— join solutions
-> (prob -> sol) -- solve a subproblem

-> (prob -> sol)
divConq indiv split join f prob
= runPar $ go prob
where
go prob

| indiv prob = return (f prob)

| otherwise = do
let (a,b) = split prob
i <- spawn $ go a
j <- spawn $ go b
a<-get i
b <- get j
return (join a b)

parallel sort

parsort :: Int -> [Int] -> [Int]
parsort thresh xs
= divConqg indiv divide merge (List.sort . snd) (thresh,xs)
where
indiv (n,xs) = n ==

divide (n,xs) = ((n-1, as), (n-1, bs))
where (as,bs) = halve xs

halve xs = splitAt n2 xs
where
n2 = div (length xs)

Implementation

e Starting point: A Poor Man’s Concurrency Monad
(Claessen JFP’99)

* PMC was used to simulate concurrency in a
sequential Haskell implementation. We are using
It as a way to implement very lightweight non-
preemptive threads, with a parallel scheduler.

* Following PMC, the implementation is divided
into two:

— Par computations produce a lazy Trace

— A scheduler consumes the Traces, and switches
between multiple threads

Traces

* A “thread” produces a lazy stream of
operations:

data Trace
Fork Trace Trace
Done

forall a . Put (Ivar a) a Trace
forall a . New (Ivar a -> Trace)

|
| forall a . Get (Ivar a) (a -> Trace)
|
|

The Par monad

* Parisa CPS monad:

hewtype Par a = Par {
runcont :: (a -> Trace) -> Trace

}

instance Monad Par where
return a = Par $ \c -> c a
m >>= k Ppar $ \c -> runCont m $
\a -> runcont (k a) c

Operations

fork :: Ppar O -> pPar Q)
fork p = Par $ \c >
Fork (runcont p (_ -> Done)) (c O)

new :: Par (Ivar a)
hew = Par $ \c -> New c

get :: Ivar a -> Par a
get v = Par $ \c -> Get v C

put :: NFData a => Ivar a -> a -> Par ()
put v a = deepseq a (Par $ \c -> Put v a (c 0))

e.g.

* This code:

do

X <- new
fork (put x 3)

r <- get X
return (r+l1)

* will produce a trace like this:

New (\x ->
Fork (Put x 3 $ Done)

(Get x (\r —>
c (r + 1))))

The scheduler

* First, a sequential scheduler.

The currently running
thread

sched :: schedstate -> Trace -> I0 ()

type Schedstate = [Trace]

Why 10?
Because we’re going
to extend it to be a

The work pool, parallel scheduler in a
“" n
runnable threads moment.

Representation of IVar

nhewtype IVar a = Ivar (IorRef (IvarcContents a))

data Ivarcontents a = Full a | Blocked [a -> Trace]

set of threads
blocked in get

Fork and Done

sched state Done = reschedule state

reschedule :: Schedstate -> 10 ()
reschedule [] return ()
reschedule (t:ts) sched ts t

sched state (Fork child parent) =
sched (child:state) parent

New and Get

sched state (New f) = do
r <- newIORef (Blocked [])
sched state (f (Ivar r))

sched state (Get (Ivar v) c) = do
e <- readIORef v
case e of
Full a -> sched state (c a)
Blocked cs -> do
writeIoRef v (Blocked (c:cs))
reschedule state

Put

sched state (Put (Ivar v) a t) = do
cs <- modifyIOorRef v $§ \e -> case e of
case e of
Full _ -> error "multiple put”
Blocked cs -> (Full a, cs)
Tet state' = map ($ a) cs ++ state

sched state' t
Wake up all the

blocked threads, add
them to the work
pool

modifyIORef :: IORef a -> (a -> (a,b)) -> 1I0 b

Finally... runPar

rref is an IVar to hold
the return value

runPar :: Par a -> a
runPar X unsafePerformio $ do

rref <- newIorRef (Blocked [])™ the “main thread”
sched [] $ stores the result in rref

runcont (x >>= put_ (Ivar rref))

(const Done)
r <- readIoRef rref
case r of
Full a -> return a
-> error "'no result”

if the result is empty,
the main thread must
have deadlocked

e that’s the complete sequential scheduler

A real parallel scheduler

* We will create one scheduler thread per core

* Each scheduler has a local work pool

— when a scheduler runs out of work, it tries to steal
from the other work pools

* The new state:

data schedstate = SChedStat

{ no :: Int,

workpool :: IORef [Trace], Local work pool

idle : : IORef [Mvar Bool],

scheds :: [Schedstate] dle schedulers
} (shared)
Other schedulers (for
stealing)

New/Get/Put

* New is the same

* Mechanical changes to Get/Put:
— use atomicModifylORef to operate on IVars

— use atomicModifylORef to modify the work pool
(now an IORef [Trace], was previously [Trace]).

reschedule

reschedule :: Schedstate -> 10 ()
reschedule state@schedstate{ workpool } = do
e <- atomicModifyIoRef workpool $ \ts ->
case ts of
[] -> ([], Nothing)
(t:ts') -> (ts', Just t)
case e of

Just t -> sched state t
Nothing -> steal state

Here’s where
we go stealing

stealing

steal :: Schedstate -> I0 ()
steal state@schedstate{ scheds, no=me } = go scheds
where
go (x:xs)
| no x == me go Xs
| otherwise = do
r <- atomicModifyIorRef (workpool x) $ \ ts ->
case ts of
[] -> ([1, Nothing)
(x:xs) -> (xs, Just x)
case r of
Just t -> sched state t
Nothing -> go xs
go [] = do
-- failed to steal anything; add ourself to the
-- idle queue and wait to be woken up

runPar :: Par a -> a
runPar X = unsafePerformIOo $ do
let states =
main_cpu <- getCurrentCPU
m <- newEmptyMmvar
forM_ (zip [0..] states) $ \(cpu,state) ->

forkOnIO cpu $. _‘:’ﬂﬂ_,_—————/VTheﬁnamthmmd"
1f (cpu /= main_cpu)

runs on the current

CPU, all other CPUs
run workers

then reschedule state
else do
rref <- newIORef Empty
sched state $
runCont (x >>= put_ (Ivar rref))
(const Done)
readIORef rref >>= putMvar m

An MVar
r <- takemMvar m communicates the
case r of Full a -> return a result back to the

_ => error "no result” caller of runPar

0,
blackscholes —+— 99%
minimax —=«—
mange’

speedup 95%

50%

cores

Modularity

* Key property of Strategies is modularity

parMap f xs = map f xs using parList rwhnf

* Relies on lazy evaluation

— fragile

— not always convenient to build a lazy data structure
* Par takes a different approach to modularity:

— the Par monad is for coordination only

— the application code is written separately as pure
Haskell functions

— The “parallelism guru” writes the coordination code

— Par performance is not critical, as long as the grain
size is not too small

Par monad compared to Strategies

Separation of function and parallelisation done
differently

Eval monad and Strategies are advisory

Par monad does not support speculative parallelism
as Stategies do

Par monad supports stream processing pipelines
well

Note: Par monad and Strategies can be combined...

Par Monad easier to use than par?

fork creates one parallel task
Dependencies between tasks represented by Ivars
No need to reason about laziness

put is hyperstrict by default

Final suggestion in Par Monad paper is that maybe par
is suitable for automatic parallelisation

Sorting speedups

For those curious about the Sort Challenge
(from 2012), the results are

presented in this gzipped file, including slides

4,5

35

25

1,5

0,5

ald

[
N

In the meantime

Do exercise 1 (not graded)
Read papers and PCPH
Continue working on Lab A (due midnight April 6)
Note Nick’s office hours

(room 5461, wed 13-14 and fri 13-14)
Extra office hours today from 15.00

Use him! He is your best resource.

