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Functional Programming with Curly Brackets ??

What the heck....

Imagine...

I (you want to design a new functional language)

I you want to seduce “curly bracket” programmers

I you want people on non-functional programming conferences
to “understand” your code

I you want to exploit functional semantics for compiler
optimisation and parallelisation

I you are pragmatic
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Functional Programming with Curly Brackets !!

...then your Factorial function could look like this:

int fac( int n)

{

if (n <= 1) f = 1;

else f = n * fac(n-1);

return f;

}
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Functional Programming with Curly Brackets !!

...then your Factorial function could look like this:

int fac( int n)

{

if (n <= 1) f = 1;

else f = n * fac(n-1);

return f;

}

...or like this:

int fac( int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}
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What is Functional Programming ?

Execution Model:

Imperative programming:
Sequence of instructions
that step-wise manipulate the program state

Functional programming:
Context-free substitution of expressions
until fixed point is reached
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Functional Semantics of SAC

SAC:

{

...

a = 5;

b = 7;

a = a + b;

return a;

}

Functional pseudo code:

...

let a = 5

in let b = 7

in let a = a + b

in a
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{

...

a = 5;

b = 7;
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return a;

}

Functional pseudo code:
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let a = 5

and b = 7

in let a = a + b

in a
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Functional Semantics of SAC

SAC:

int fac( int n)

{

if (n>1) {

r = fac( n-1);

f = n * r;

}

else {

f = 1;

}

return f;

}

Functional pseudo code:

fun fac n =

if n>1

then let r = fac (n-1)

in let f = n * r

in f

else let val f = 1

in f
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Functional Semantics of SAC

SAC:

int fac( int n)

{

f = 1;

while (n>1) {

f = f * n;

n = n - 1;

}

return f;

}

Functional pseudo code:

fun fac n =

let f = 1 in

let rec fac_while f n =

if n>1

then let f = f * n

in let n = n - 1

in fac_while f n

else f

in

let f = fac_while f n

in f
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Functional Programming with Curly Brackets

Execution model:

I NOT: Step-wise modification of state

I BUT: Context-free substitution of expressions

Role of variables:

I NOT: Names of a memory locations

I BUT: Placeholders for values

Role of functions:

I NOT: Subroutines with side-effects

I BUT: Mappings of argument values to result values
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Interesting but ....

... why should I use SAC ?

... is there anything SAC can do better ?
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Today’s Hardware: The Multi-/Many-Core Zoo
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Design Rationale of SAC

Hardware in the many-core era is a zoo:

I Diverse low-level programming models

I Each requires expert knowledge

I Heterogeneous combinations of the above ?

SAC: Genericity through abstraction

I Program what to compute, not exactly how

I Leave execution organisation to compiler and runtime system

I Put expert knowledge into compiler, not into applications

I Let programs remain architecture-agnostic

I Compile one source to diverse target hardware

I Pursue data-parallel approach
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What Does Data Parallel Really Mean ?

Factorial recursive:

int fac( int n)

{

if (n <= 1) f = 1;

else f = n * fac(n-1);

return f;

}

Factorial iterative:

int fac( int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial data parallel:

int fac( int n)

{

return prod( 1 + iota( n));

}
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The Essence of Data Parallel Programming

prod( 1+iota(n))
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The Essence of Data Parallel Programming

seqential

to

prod( 1+iota(n))

code

compilation
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The Essence of Data Parallel Programming
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The Essence of Data Parallel Programming
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Multidimensional Arrays in SAC

 1 2 3
4 5 6
7 8 9

 dim: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

i

k

j

10

7 8 9

1211

1 2

4 5

3

6

dim: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

[ 1, 2, 3, 4, 5, 6 ]
dim: 1
shape: [ 6 ]
data: [1,2,3,4,5,6]

42

dim: 0
shape: [ ]
data: [42]
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Built-in Array Operations

I Defining a vector:
vec = [1,2,3,4,5,6];

I Defining a higher-dimensional array:
mat = [vec,vec];

mat = reshape( [3,2], vec);

I Querying for the shape of an array:
shp = shape( mat); [3,2]

I Querying for the rank of an array:
rank = dim( mat); 2

I Selecting elements:
x = sel( [4], vec); 5

y = sel( [2,1], mat); 6

x = vec[[4]]; 5

y = mat[[2,1]]; 6
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With-Loops: Versatile Array Comprehensions

A = with {
([1,1] <= iv < [4,4]) : e(iv);

}: genarray( [5,4], def );

I Multidimensional array comprehensions

I Mapping from index domain into value domain

e([3,1])

index domain

[0,0]

[1,0]

[2,0]

[3,0]

[0,1]

[1,1]

[2,1]

[3,1]

[0,2]

[1,2]

[2,2]

[3,2]

[4,0] [4,1] [4,2] [4,3]

[3,3]

[2,3]

[1,3]

[0,3] def def def def

defdef

def

def

def def def def

e([1,3])

e([2,3])

e([3,3])

e([1,2])

e([2,2])

e([3,2])

e([1,1])

e([2,1])

value domain
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With-Loops: Modarray Variant

A = with {
([1,1] <= iv < [3,4]) : e(iv);

}: modarray( B );

A =


B[[0,0]] B[[0,1]] B[[0,2]] B[[0,3]] B[[0,4]]
B[[1,0]] e( [1,1]) e( [1,2]) e( [1,3]) B[[1,4]]
B[[2,0]] e( [2,1]) e( [2,2]) e( [2,3]) B[[2,4]]
B[[3,0]] B[[3,1]] B[[3,2]] B[[3,3]] B[[3,4]]
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With-Loops: Fold Variant

A = with {
([1,1] <= iv < [3,4]) : e(iv);

}: fold( ⊕, neutr );

A = neutr ⊕ e( [1,1]) ⊕ e( [1,2]) ⊕ e( [1,3])
⊕ e( [2,1]) ⊕ e( [2,2]) ⊕ e( [2,3])

( ⊕ denotes associative, commutative binary function. )
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Principle of Abstraction

Element-wise subtraction of arrays:

int [20 ,20] (-) (int [20 ,20] A, int [20 ,20] B)

{

res = with {

([0 ,0] <= iv < [20 ,20]) : A[iv] - B[iv];

}: genarray( [20,20], 0);

return( res);

}
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{

res = with {

([0 ,0] <= iv < [20 ,20]) : A[iv] - B[iv];

}: genarray( [20,20], 0);

return( res);

}

Shape-generic code

int[.,.] (-) (int[.,.] A, int[.,.] B)

{

shp = min( shape(A), shape(B));

res = with {

([0 ,0] <= iv < shp) : A[iv] - B[iv];

}: genarray( shp , 0);

return( res);

}
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Principle of Abstraction
int[.,.] (-) (int[.,.] A, int[.,.] B)

{

shp = min( shape(A), shape(B));

res = with {

([0 ,0] <= iv < shp) : A[iv] - B[iv];

}: genarray( shp , 0);

return( res);

}

Rank-generic code

int [*] (-) (int [*] A, int [*] B)

{

shp = min( shape(A), shape(B));

res = with {

(0* shp <= iv < shp) : A[iv] - B[iv];

}: genarray( shp , 0);

return( res);

}
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Shapely Array Type Hierarchy With Subtyping

...

... ... ......int int[1] int[42]

int[.]

int[  ]

int[.,.]

int[1,1] int[3,7]

rank: dynamic

shape: static

shape: dynamic

rank: static

shape: dynamic

rank: static

*

AUD Class:

AKD Class:

AKS Class:

AUD : Array of Unknown Dimension
AKD : Array of Known Dimension
AKS : Array of Known Shape
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Function Overloading
Example:

int [20 ,20] (-) (int [20 ,20] A, int [20 ,20] B) {...}

int[.,.] (-) (int[.,.] A, int[.,.] B) {...}

int [*] (-) (int [*] A, int [*] B) {...}

Features:

I Multiple function definitions with same name, but
I different numbers of arguments
I different base types
I different shapely types

I No restriction on function semantics

I Argument subtyping must be monotonous
I Function dispatch:

I as static as possible
I as dynamic as needed
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Principle of Composition

Characteristics:

I Step-wise composition of functions

I from previously defined functions

I or basic building blocks (with-loop defined)

Example: convergence test

bool

is_convergent (double [*] new , double [*] old , double eps)

{

return( all( abs( new - old) < eps ));

}
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Principle of Composition

Example: convergence test

bool

is_convergent (double [*] new , double [*] old , double eps)

{

return( all( abs( new - old) < eps ));

}

Advantages:

I Rapid prototyping

I High confidence in correctness

I Good readability of code
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Execution through Context-Free Substitution

Convergence Test:

is convergent( [1,2,3,8], [3,2,1,4], 3 )

all( abs( [1,2,3,8] - [3,2,1,4]) < 3 )

all( abs( [-2,0,2,4]) < 3 )

all( [2,0,2,4] < 3 )

all( [true, true, true, false])

false
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Shape-Generic Programming

2-dimensional convergence test:

is convergent(

(
1 2
3 8

)
,

(
3 2
1 7

)
, 3 )

3-dimensional convergence test:

is convergent(


(

1 2
3 8

)
(

6 7
2 8

)
,


(

2 1
0 8

)
(

1 1
3 7

)
, 3 )
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The Power of With-Loops

I NO large collection of built-in operations
I Simplified compiler design

I INSTEAD: library of array operations
I Improved maintainability
I Improved extensibility

I Composition of building blocks
I Rapid prototyping
I High confidence in correctness
I Good readability of code

I General intermediate representation
for array operations

I Basis for code optimization
I Basis for implicit parallelization
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Case Study: Convolution

Algorithmic principle:

Compute weighted sums
of neighbouring elements

Periodic boundary conditions (1-dimensional):
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Convolution Step in SAC

1-dimensional:

double [.] convolution_step (double [.] A)

{

R = with {

...

}

return R;

}
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Convolution Step in SAC

1-dimensional:

double [.] convolution_step (double [.] A)

{

R = A + rotate( 1, A) + rotate( -1, A);

return R / 3.0;

}
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Convolution Step in SAC

1-dimensional:

double [.] convolution_step (double [.] A)

{

R = A + rotate( 1, A) + rotate( -1, A);

return R / 3.0;

}

N-dimensional:

double [*] convolution_step (double [*] A)

{

R = A;

for (i=0; i<dim(A); i++) {

R = R + rotate( i, 1, A) + rotate( i, -1, A);

}

return R / tod( 2 * dim(A) + 1);

}
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Convolution in SAC

Fixed number of iterations:

double [*] convolution (double [*] A, int iter)

{

for (i=0; i<iter; i++) {

A = convolution_step( A);

}

return A;

}
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Convolution in SAC

Variable number of iterations with convergence check:

double [*] convolution (double [*] A, double eps)

{

do {

A_old = A;

A = convolution_step( A_old);

}

while (! is_convergent( A, A_old , eps));

return A;

}
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Convolution in SAC

Variable number of iterations with convergence check:

double [*] convolution (double [*] A, double eps)

{

do {

A_old = A;

A = convolution_step( A_old);

}

while (! is_convergent( A, A_old , eps));

return A;

}

Convergence check:

bool

is_convergent (double [*] new , double [*] old , double eps)

{

return all( abs( new - old) < eps);

}
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Summary: Power of Abstraction

Functional array programming in SAC:

I High productivity software engineering and maintenance
I High confidence in correctness of code
I Programming by abstraction
I Programming by composition of abstractions
I High readability of code
I Entirely architecture- and resource-agnostic

Opportunities for compiler and runtime system:

I Aggressive machine-independent optimisation exploiting
compositional, side-effect-free semantics

I Machine-specific customisation and adaptation
I Automatic granularity control:

Customised adaptation to concrete computing architecture
I Automatic resource management:

memory, cores, nodes, energy, ...
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Compilation Challenge

Advanced Compilation

SAC
Functional Array Programs

And achieve reasonably high performance....
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Compilation Challenge

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets



Challenge Taken: the SAC Compiler

Scanner / Parser

Code Generator
SMP Multi−Core 

Code Generator
Sequential

Code Generator
MicroGrid

Code Generator
CUDA

Backend Compiler Backend Compiler Backend Compiler Backend Compiler
NVidia CmuTCANSI CANSI C

Parallelisation

De−Functionalisation

Memory Management

High−Level

Optimisation

Type Specialisation

Type Inference

Functionalisation
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Challenge Taken: the SAC Compiler

Scanner / Parser

Type Inference

Functionalisation
Function Inlining

Dead Code Removal
Common Subexpression Elimination

Copy Propagation
Algebraic Simplification
Loop Unrolling
Memory Reuse

Code Generator
SMP Multi−Core 

Code Generator
Sequential

Code Generator
MicroGrid

Code Generator
CUDA

Backend Compiler Backend Compiler Backend Compiler Backend Compiler
NVidia CmuTCANSI CANSI C

Constant Folding and Propagation
Loop Invariant Removal

Array Elimination

With−Loop Folding
With−Loop Fusion
With−Loop Invariant Removal
With−Loop Unrolling
With−Loop Scalarisation
With−Loop Tiling
Automatic Array Padding
Index Vector Elimination

Parallelisation

De−Functionalisation

Memory Management

High−Level

Optimisation

Type Specialisation
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Challenge Taken: the SAC Compiler

Scanner / Parser

Static Code Analysis

Dynamic Reference Counting

Memory Reuse Optimisation

Data Reuse Optimisation

Advanced Aliasing Analysis

Address Aggregate Update Problem:

Type Inference

Functionalisation

Code Generator
SMP Multi−Core 

Code Generator
Sequential

Code Generator
MicroGrid

Code Generator
CUDA

Backend Compiler Backend Compiler Backend Compiler Backend Compiler
NVidia CmuTCANSI CANSI C

Parallelisation

De−Functionalisation

Memory Management

High−Level

Optimisation

Type Specialisation
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Challenge Taken: the SAC Compiler

Compiler fact sheet:

I Around 300,000 lines of code
I Around 1000 files:

I + standard prelude
I + standard library

I Around 250 compiler passes
I Complete compiler construction toolkit as side product:

I re-used in other compiler research projects
I re-used in teaching compiler courses (Bachelor/Master)

Where’s the trick ?

I Purely functional semantics benefits large-scale program
transformation

I Stringent language–compiler co-design with one goal:
high performance in parallel execution of array programs
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The SAC Project

International partners:

I University of Kiel, Germany (1994–2005)

I University of Toronto, Canada (since 2000)

I University of Lübeck, Germany (2001–2008)

I University of Hertfordshire, England (2003–2012)

I University of Amsterdam, Netherlands (since 2008)

I Heriot-Watt University, Scotland (since 2011)
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Experiment: SAC on x86 Multi-Core Multi-Processor

Machine:

I 4 AMD Opteron 8356 processors
I 4 fully-fledged cores each

Unsteady Shock Wave Simulation:

the third order Runge-Kutta TVD method and first order piecewise constant
reconstruction.

Compiler Version Arguments

Sac2C
Sac2C 16094 -L fluid -maxoptcyc 100 -O3 -mt

-DDIM=2 -nofoldparallel -maxwlur 20stdlib 1120
Sun Studio
Compiler-f90

8.3 Linux i386
Patch 127145-01

-autopar -parallel -loopinfo -reduction
-O3 -fast

The computer used to perform these benchmarks is a 4xQuad-Core (16 core)
AMD OpteronTM 8356 with 16GB of RAM. Both the SaC and Fortran source
code is available at http://sac-home.org.

As the Fortran compiler uses OpenMP for parallelization, environment vari-
ables where set to control the runtime behaver of the Fortran code. Several
di↵erent combinations where tried however these made a negligible di↵erence to
the runtime of the program. The options that produced the fastest runtimes, and
therefore where used for the main benchmarking, were: OMP_SCHEDULE=STATIC,
OMP_NESTED=TRUE and OMP_DYNAMIC=FALSE.
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Fig. 4. Wall clock time of a 1000 time step simulation on a 400x400 grid.

It can be seen in Figure 4 that SaC was much slower than the Fortran when
run on just one core. However the Fortran code did not scale well with the
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Experiment: SAC on Graphics Accelerator

Machine:

I NVidia Tesla GPU

Lattice-Boltzmann:
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Experiment: SAC on Multiple Graphics Accelerators

Machine:

I 8 NVidia GeForce GTX 580

Convolution kernel:

I 8000x8000 matrix, 10000 iterations
I requires data exchange between GPGPUs after each iteration
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Experiment: SAC on Heterogeneous System

Machine:

I 2 quad-core Intel Xeon processors

I 2 NVidia GTX480 GPUs

Convolution kernel:

2 CPUs 1 GPU 2 CPUs + 1 GPU 2 CPUs + 2 GPUs
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Experiment: SAC on Ultra Sparc T3-4 Server

Machine:

I 4 Oracle Ultra Sparc T3 processors
I 4× 16 = 64 cores
I 4× 16× 8 = 512 hardware threads

Matrix multiplication:
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Summary

Language design:

I Functional state-less semantics with C-like syntax

I Data parallel array programming

I Abstraction and composition

I Shape-generic programming

I Index-free programming

Language implementation:

I Fully-fledged compiler

I Automatic parallelisation

I Automatic memory management

I High-level program transformation

I Large-scale machine-independent optimisation

I Performance competitive with the “real” curly brackets!!
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The End

Questions ?

Check out www.sac-home.org !!
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Bonus Slides: Input and Output

Example:

import StdIO: all;

import ArrayIO: all;

int main()

{

a = 42;

b = [1,2,3,4,5];

errcode , outfile = fopen( "filename", "w");

fprintf( outfile , "a = %d\n", a);

fprint( outfile , b);

fclose( outfile );

return 0;

}
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Digression: Input and Output

Example functionalised by compiler:

FileSystem , int main( FileSystem theFileSystem)

{

a = 42;

b = [1,2,3,4,5];

theFileSystem , errcode , outfile

= fopen( theFileSystem , "filename", "w");

outfile = fprintf( outfile , "a = %d\n", a);

outfile = fprint( outfile , b);

theFileSystem = fclose( theFileSystem , outfile );

return( theFileSystem , 0);

}

FileSystem and File are uniqueness types.
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