
The SAC Story:
From Functional Programming

with Curly Brackets
to High Performance Computing

Clemens Grelck

University of Amsterdam

MSc Course

Parallel Functional Programming

Chalmers University of Technology
Göteborg, Sweden

May 26, 2015

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

SAC: High Productivity meets High Performance

Functional Programming with Curly Brackets ?

Design Rationale of SAC

Data-Parallel Functional Array Programming in SAC

Abstraction and Composition

Case Study: Generic Convolution

Compilation Challenge

Does it Work ? Some Experimental Evaluation

Summary and Conclusion

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Programming with Curly Brackets ??

What the heck....

Imagine...

I (you want to design a new functional language)

I you want to seduce “curly bracket” programmers

I you want people on non-functional programming conferences
to “understand” your code

I you want to exploit functional semantics for compiler
optimisation and parallelisation

I you are pragmatic

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Programming with Curly Brackets ??

What the heck....

Imagine...

I (you want to design a new functional language)

I you want to seduce “curly bracket” programmers

I you want people on non-functional programming conferences
to “understand” your code

I you want to exploit functional semantics for compiler
optimisation and parallelisation

I you are pragmatic

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Programming with Curly Brackets ??

What the heck....

Imagine...

I (you want to design a new functional language)

I you want to seduce “curly bracket” programmers

I you want people on non-functional programming conferences
to “understand” your code

I you want to exploit functional semantics for compiler
optimisation and parallelisation

I you are pragmatic

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Programming with Curly Brackets ??

What the heck....

Imagine...

I (you want to design a new functional language)

I you want to seduce “curly bracket” programmers

I you want people on non-functional programming conferences
to “understand” your code

I you want to exploit functional semantics for compiler
optimisation and parallelisation

I you are pragmatic

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Programming with Curly Brackets ??

What the heck....

Imagine...

I (you want to design a new functional language)

I you want to seduce “curly bracket” programmers

I you want people on non-functional programming conferences
to “understand” your code

I you want to exploit functional semantics for compiler
optimisation and parallelisation

I you are pragmatic

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Programming with Curly Brackets ??

What the heck....

Imagine...

I (you want to design a new functional language)

I you want to seduce “curly bracket” programmers

I you want people on non-functional programming conferences
to “understand” your code

I you want to exploit functional semantics for compiler
optimisation and parallelisation

I you are pragmatic

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Programming with Curly Brackets !!

...then your Factorial function could look like this:

int fac(int n)

{

if (n <= 1) f = 1;

else f = n * fac(n-1);

return f;

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Programming with Curly Brackets !!

...then your Factorial function could look like this:

int fac(int n)

{

if (n <= 1) f = 1;

else f = n * fac(n-1);

return f;

}

...or like this:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

What is Functional Programming ?

Execution Model:

Imperative programming:
Sequence of instructions
that step-wise manipulate the program state

Functional programming:
Context-free substitution of expressions
until fixed point is reached

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Semantics of SAC

SAC:

{

...

a = 5;

b = 7;

a = a + b;

return a;

}

Functional pseudo code:

...

let a = 5

in let b = 7

in let a = a + b

in a

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Semantics of SAC

SAC:

{

...

a = 5;

b = 7;

a = a + b;

return a;

}

Functional pseudo code:

...

let a = 5

and b = 7

in let a = a + b

in a

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Semantics of SAC

SAC:

int fac(int n)

{

if (n>1) {

r = fac(n-1);

f = n * r;

}

else {

f = 1;

}

return f;

}

Functional pseudo code:

fun fac n =

if n>1

then let r = fac (n-1)

in let f = n * r

in f

else let val f = 1

in f

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Semantics of SAC

SAC:

int fac(int n)

{

f = 1;

while (n>1) {

f = f * n;

n = n - 1;

}

return f;

}

Functional pseudo code:

fun fac n =

let f = 1 in

let rec fac_while f n =

if n>1

then let f = f * n

in let n = n - 1

in fac_while f n

else f

in

let f = fac_while f n

in f

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Programming with Curly Brackets

Execution model:

I NOT: Step-wise modification of state

I BUT: Context-free substitution of expressions

Role of variables:

I NOT: Names of a memory locations

I BUT: Placeholders for values

Role of functions:

I NOT: Subroutines with side-effects

I BUT: Mappings of argument values to result values

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Programming with Curly Brackets

Execution model:

I NOT: Step-wise modification of state

I BUT: Context-free substitution of expressions

Role of variables:

I NOT: Names of a memory locations

I BUT: Placeholders for values

Role of functions:

I NOT: Subroutines with side-effects

I BUT: Mappings of argument values to result values

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Functional Programming with Curly Brackets

Execution model:

I NOT: Step-wise modification of state

I BUT: Context-free substitution of expressions

Role of variables:

I NOT: Names of a memory locations

I BUT: Placeholders for values

Role of functions:

I NOT: Subroutines with side-effects

I BUT: Mappings of argument values to result values

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Interesting but

... why should I use SAC ?

... is there anything SAC can do better ?

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Interesting but

... why should I use SAC ?

... is there anything SAC can do better ?

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

SAC: High Productivity meets High Performance

Functional Programming with Curly Brackets ?

Design Rationale of SAC

Data-Parallel Functional Array Programming in SAC

Abstraction and Composition

Case Study: Generic Convolution

Compilation Challenge

Does it Work ? Some Experimental Evaluation

Summary and Conclusion

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Today’s Hardware: The Multi-/Many-Core Zoo

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Today’s Hardware: The Multi-/Many-Core Zoo

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Today’s Hardware: The Multi-/Many-Core Zoo

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Today’s Hardware: The Multi-/Many-Core Zoo

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Today’s Hardware: The Multi-/Many-Core Zoo

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Design Rationale of SAC

Hardware in the many-core era is a zoo:

I Diverse low-level programming models

I Each requires expert knowledge

I Heterogeneous combinations of the above ?

SAC: Genericity through abstraction

I Program what to compute, not exactly how

I Leave execution organisation to compiler and runtime system

I Put expert knowledge into compiler, not into applications

I Let programs remain architecture-agnostic

I Compile one source to diverse target hardware

I Pursue data-parallel approach

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Design Rationale of SAC

Hardware in the many-core era is a zoo:

I Diverse low-level programming models

I Each requires expert knowledge

I Heterogeneous combinations of the above ?

SAC: Genericity through abstraction

I Program what to compute, not exactly how

I Leave execution organisation to compiler and runtime system

I Put expert knowledge into compiler, not into applications

I Let programs remain architecture-agnostic

I Compile one source to diverse target hardware

I Pursue data-parallel approach

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Design Rationale of SAC

Hardware in the many-core era is a zoo:

I Diverse low-level programming models

I Each requires expert knowledge

I Heterogeneous combinations of the above ?

SAC: Genericity through abstraction

I Program what to compute, not exactly how

I Leave execution organisation to compiler and runtime system

I Put expert knowledge into compiler, not into applications

I Let programs remain architecture-agnostic

I Compile one source to diverse target hardware

I Pursue data-parallel approach

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Design Rationale of SAC

Hardware in the many-core era is a zoo:

I Diverse low-level programming models

I Each requires expert knowledge

I Heterogeneous combinations of the above ?

SAC: Genericity through abstraction

I Program what to compute, not exactly how

I Leave execution organisation to compiler and runtime system

I Put expert knowledge into compiler, not into applications

I Let programs remain architecture-agnostic

I Compile one source to diverse target hardware

I Pursue data-parallel approach

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Design Rationale of SAC

Hardware in the many-core era is a zoo:

I Diverse low-level programming models

I Each requires expert knowledge

I Heterogeneous combinations of the above ?

SAC: Genericity through abstraction

I Program what to compute, not exactly how

I Leave execution organisation to compiler and runtime system

I Put expert knowledge into compiler, not into applications

I Let programs remain architecture-agnostic

I Compile one source to diverse target hardware

I Pursue data-parallel approach

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Design Rationale of SAC

Hardware in the many-core era is a zoo:

I Diverse low-level programming models

I Each requires expert knowledge

I Heterogeneous combinations of the above ?

SAC: Genericity through abstraction

I Program what to compute, not exactly how

I Leave execution organisation to compiler and runtime system

I Put expert knowledge into compiler, not into applications

I Let programs remain architecture-agnostic

I Compile one source to diverse target hardware

I Pursue data-parallel approach

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Design Rationale of SAC

Hardware in the many-core era is a zoo:

I Diverse low-level programming models

I Each requires expert knowledge

I Heterogeneous combinations of the above ?

SAC: Genericity through abstraction

I Program what to compute, not exactly how

I Leave execution organisation to compiler and runtime system

I Put expert knowledge into compiler, not into applications

I Let programs remain architecture-agnostic

I Compile one source to diverse target hardware

I Pursue data-parallel approach

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Design Rationale of SAC

Hardware in the many-core era is a zoo:

I Diverse low-level programming models

I Each requires expert knowledge

I Heterogeneous combinations of the above ?

SAC: Genericity through abstraction

I Program what to compute, not exactly how

I Leave execution organisation to compiler and runtime system

I Put expert knowledge into compiler, not into applications

I Let programs remain architecture-agnostic

I Compile one source to diverse target hardware

I Pursue data-parallel approach

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

What Does Data Parallel Really Mean ?

Factorial recursive:

int fac(int n)

{

if (n <= 1) f = 1;

else f = n * fac(n-1);

return f;

}

Factorial iterative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial data parallel:

int fac(int n)

{

return prod(1 + iota(n));

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

What Does Data Parallel Really Mean ?

Factorial recursive:

int fac(int n)

{

if (n <= 1) f = 1;

else f = n * fac(n-1);

return f;

}

Factorial iterative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial data parallel:

int fac(int n)

{

return prod(1 + iota(n));

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

What Does Data Parallel Really Mean ?

Factorial recursive:

int fac(int n)

{

if (n <= 1) f = 1;

else f = n * fac(n-1);

return f;

}

Factorial iterative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial data parallel:

int fac(int n)

{

return prod(1 + iota(n));

}

10

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

What Does Data Parallel Really Mean ?

Factorial recursive:

int fac(int n)

{

if (n <= 1) f = 1;

else f = n * fac(n-1);

return f;

}

Factorial iterative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial data parallel:

int fac(int n)

{

return prod(1 + iota(n));

}

10

20 1 3 4 5 7 8 96

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

What Does Data Parallel Really Mean ?

Factorial recursive:

int fac(int n)

{

if (n <= 1) f = 1;

else f = n * fac(n-1);

return f;

}

Factorial iterative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial data parallel:

int fac(int n)

{

return prod(1 + iota(n));

}

2

2

10

10

0 1 3 4 5 7 8 9

1 3 4 5 8 96

6

7

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

What Does Data Parallel Really Mean ?

Factorial recursive:

int fac(int n)

{

if (n <= 1) f = 1;

else f = n * fac(n-1);

return f;

}

Factorial iterative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial data parallel:

int fac(int n)

{

return prod(1 + iota(n));

}

2

10

3628800

10

2

8 9

1 3 4 5 7 8 96

60 1 3 4 5 7

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

The Essence of Data Parallel Programming

prod(1+iota(n))

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

The Essence of Data Parallel Programming

seqential

to

prod(1+iota(n))

code

compilation

6

2

1

3628800

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

The Essence of Data Parallel Programming

to

codecode

seqential

to

compilation

0

10

prod(1+iota(n))

microthreaded

compilation

3628800

24 1680

2

151200

30

2

2

2 12

0

56

3628800

6

2

1

90

8 9765431

1 3 4 5 6 7 8 9

1 3 4 5 7 8 96

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

The Essence of Data Parallel Programming

1

compilation

code

microthreaded

to

compilation

code

seqential

to

compilation

to

prod(1+iota(n))

code

0

0

multithreaded

3628800

1

2

6

2

3628800

30240120 2 12 56 90

24 1680

151200

30

2

2

2

0

2

0

2 10

3628800

65431

1 3 4 5 6

64310 75 8 9

7 8 9

1 3 4 5 7 8 969

98765431

8 9765431

87

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

SAC: High Productivity meets High Performance

Functional Programming with Curly Brackets ?

Design Rationale of SAC

Data-Parallel Functional Array Programming in SAC

Abstraction and Composition

Case Study: Generic Convolution

Compilation Challenge

Does it Work ? Some Experimental Evaluation

Summary and Conclusion

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Multidimensional Arrays in SAC

 1 2 3
4 5 6
7 8 9

 dim: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

i

k

j

10

7 8 9

1211

1 2

4 5

3

6

dim: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

[1, 2, 3, 4, 5, 6]
dim: 1
shape: [6]
data: [1,2,3,4,5,6]

42

dim: 0
shape: []
data: [42]

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Multidimensional Arrays in SAC

 1 2 3
4 5 6
7 8 9

 dim: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

i

k

j

10

7 8 9

1211

1 2

4 5

3

6

dim: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

[1, 2, 3, 4, 5, 6]
dim: 1
shape: [6]
data: [1,2,3,4,5,6]

42

dim: 0
shape: []
data: [42]

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Multidimensional Arrays in SAC

 1 2 3
4 5 6
7 8 9

 dim: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

i

k

j

10

7 8 9

1211

1 2

4 5

3

6

dim: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

[1, 2, 3, 4, 5, 6]
dim: 1
shape: [6]
data: [1,2,3,4,5,6]

42

dim: 0
shape: []
data: [42]

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Multidimensional Arrays in SAC

 1 2 3
4 5 6
7 8 9

 dim: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

i

k

j

10

7 8 9

1211

1 2

4 5

3

6

dim: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

[1, 2, 3, 4, 5, 6]
dim: 1
shape: [6]
data: [1,2,3,4,5,6]

42

dim: 0
shape: []
data: [42]

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Built-in Array Operations

I Defining a vector:
vec = [1,2,3,4,5,6];

I Defining a higher-dimensional array:
mat = [vec,vec];

mat = reshape([3,2], vec);

I Querying for the shape of an array:
shp = shape(mat); [3,2]

I Querying for the rank of an array:
rank = dim(mat); 2

I Selecting elements:
x = sel([4], vec); 5

y = sel([2,1], mat); 6

x = vec[[4]]; 5

y = mat[[2,1]]; 6

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Built-in Array Operations

I Defining a vector:
vec = [1,2,3,4,5,6];

I Defining a higher-dimensional array:
mat = [vec,vec];

mat = reshape([3,2], vec);

I Querying for the shape of an array:
shp = shape(mat); [3,2]

I Querying for the rank of an array:
rank = dim(mat); 2

I Selecting elements:
x = sel([4], vec); 5

y = sel([2,1], mat); 6

x = vec[[4]]; 5

y = mat[[2,1]]; 6

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Built-in Array Operations

I Defining a vector:
vec = [1,2,3,4,5,6];

I Defining a higher-dimensional array:
mat = [vec,vec];

mat = reshape([3,2], vec);

I Querying for the shape of an array:
shp = shape(mat); [3,2]

I Querying for the rank of an array:
rank = dim(mat); 2

I Selecting elements:
x = sel([4], vec); 5

y = sel([2,1], mat); 6

x = vec[[4]]; 5

y = mat[[2,1]]; 6

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Built-in Array Operations

I Defining a vector:
vec = [1,2,3,4,5,6];

I Defining a higher-dimensional array:
mat = [vec,vec];

mat = reshape([3,2], vec);

I Querying for the shape of an array:
shp = shape(mat); [3,2]

I Querying for the rank of an array:
rank = dim(mat); 2

I Selecting elements:
x = sel([4], vec); 5

y = sel([2,1], mat); 6

x = vec[[4]]; 5

y = mat[[2,1]]; 6

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Built-in Array Operations

I Defining a vector:
vec = [1,2,3,4,5,6];

I Defining a higher-dimensional array:
mat = [vec,vec];

mat = reshape([3,2], vec);

I Querying for the shape of an array:
shp = shape(mat); [3,2]

I Querying for the rank of an array:
rank = dim(mat); 2

I Selecting elements:
x = sel([4], vec); 5

y = sel([2,1], mat); 6

x = vec[[4]]; 5

y = mat[[2,1]]; 6

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

With-Loops: Versatile Array Comprehensions

A = with {
([1,1] <= iv < [4,4]) : e(iv);

}: genarray([5,4], def);

I Multidimensional array comprehensions

I Mapping from index domain into value domain

e([3,1])

index domain

[0,0]

[1,0]

[2,0]

[3,0]

[0,1]

[1,1]

[2,1]

[3,1]

[0,2]

[1,2]

[2,2]

[3,2]

[4,0] [4,1] [4,2] [4,3]

[3,3]

[2,3]

[1,3]

[0,3] def def def def

defdef

def

def

def def def def

e([1,3])

e([2,3])

e([3,3])

e([1,2])

e([2,2])

e([3,2])

e([1,1])

e([2,1])

value domain

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

With-Loops: Modarray Variant

A = with {
([1,1] <= iv < [3,4]) : e(iv);

}: modarray(B);

A =

B[[0,0]] B[[0,1]] B[[0,2]] B[[0,3]] B[[0,4]]
B[[1,0]] e([1,1]) e([1,2]) e([1,3]) B[[1,4]]
B[[2,0]] e([2,1]) e([2,2]) e([2,3]) B[[2,4]]
B[[3,0]] B[[3,1]] B[[3,2]] B[[3,3]] B[[3,4]]

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

With-Loops: Fold Variant

A = with {
([1,1] <= iv < [3,4]) : e(iv);

}: fold(⊕, neutr);

A = neutr ⊕ e([1,1]) ⊕ e([1,2]) ⊕ e([1,3])
⊕ e([2,1]) ⊕ e([2,2]) ⊕ e([2,3])

(⊕ denotes associative, commutative binary function.)

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

SAC: High Productivity meets High Performance

Functional Programming with Curly Brackets ?

Design Rationale of SAC

Data-Parallel Functional Array Programming in SAC

Abstraction and Composition

Case Study: Generic Convolution

Compilation Challenge

Does it Work ? Some Experimental Evaluation

Summary and Conclusion

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Principle of Abstraction

Element-wise subtraction of arrays:

int [20 ,20] (-) (int [20 ,20] A, int [20 ,20] B)

{

res = with {

([0 ,0] <= iv < [20 ,20]) : A[iv] - B[iv];

}: genarray([20,20], 0);

return(res);

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Principle of Abstraction

int [20 ,20] (-) (int [20 ,20] A, int [20 ,20] B)

{

res = with {

([0 ,0] <= iv < [20 ,20]) : A[iv] - B[iv];

}: genarray([20,20], 0);

return(res);

}

Shape-generic code

int[.,.] (-) (int[.,.] A, int[.,.] B)

{

shp = min(shape(A), shape(B));

res = with {

([0 ,0] <= iv < shp) : A[iv] - B[iv];

}: genarray(shp , 0);

return(res);

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Principle of Abstraction
int[.,.] (-) (int[.,.] A, int[.,.] B)

{

shp = min(shape(A), shape(B));

res = with {

([0 ,0] <= iv < shp) : A[iv] - B[iv];

}: genarray(shp , 0);

return(res);

}

Rank-generic code

int [*] (-) (int [*] A, int [*] B)

{

shp = min(shape(A), shape(B));

res = with {

(0* shp <= iv < shp) : A[iv] - B[iv];

}: genarray(shp , 0);

return(res);

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Shapely Array Type Hierarchy With Subtyping

...

...int int[1] int[42]

int[.]

int[]

int[.,.]

int[1,1] int[3,7]

rank: dynamic

shape: static

shape: dynamic

rank: static

shape: dynamic

rank: static

*

AUD Class:

AKD Class:

AKS Class:

AUD : Array of Unknown Dimension
AKD : Array of Known Dimension
AKS : Array of Known Shape

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Function Overloading
Example:

int [20 ,20] (-) (int [20 ,20] A, int [20 ,20] B) {...}

int[.,.] (-) (int[.,.] A, int[.,.] B) {...}

int [*] (-) (int [*] A, int [*] B) {...}

Features:

I Multiple function definitions with same name, but
I different numbers of arguments
I different base types
I different shapely types

I No restriction on function semantics

I Argument subtyping must be monotonous
I Function dispatch:

I as static as possible
I as dynamic as needed

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Principle of Composition

Characteristics:

I Step-wise composition of functions

I from previously defined functions

I or basic building blocks (with-loop defined)

Example: convergence test

bool

is_convergent (double [*] new , double [*] old , double eps)

{

return(all(abs(new - old) < eps));

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Principle of Composition

Example: convergence test

bool

is_convergent (double [*] new , double [*] old , double eps)

{

return(all(abs(new - old) < eps));

}

Advantages:

I Rapid prototyping

I High confidence in correctness

I Good readability of code

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Execution through Context-Free Substitution

Convergence Test:

is convergent([1,2,3,8], [3,2,1,4], 3)

all(abs([1,2,3,8] - [3,2,1,4]) < 3)

all(abs([-2,0,2,4]) < 3)

all([2,0,2,4] < 3)

all([true, true, true, false])

false

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Execution through Context-Free Substitution

Convergence Test:

is convergent([1,2,3,8], [3,2,1,4], 3)

all(abs([1,2,3,8] - [3,2,1,4]) < 3)

all(abs([-2,0,2,4]) < 3)

all([2,0,2,4] < 3)

all([true, true, true, false])

false

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Execution through Context-Free Substitution

Convergence Test:

is convergent([1,2,3,8], [3,2,1,4], 3)

all(abs([1,2,3,8] - [3,2,1,4]) < 3)

all(abs([-2,0,2,4]) < 3)

all([2,0,2,4] < 3)

all([true, true, true, false])

false

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Execution through Context-Free Substitution

Convergence Test:

is convergent([1,2,3,8], [3,2,1,4], 3)

all(abs([1,2,3,8] - [3,2,1,4]) < 3)

all(abs([-2,0,2,4]) < 3)

all([2,0,2,4] < 3)

all([true, true, true, false])

false

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Execution through Context-Free Substitution

Convergence Test:

is convergent([1,2,3,8], [3,2,1,4], 3)

all(abs([1,2,3,8] - [3,2,1,4]) < 3)

all(abs([-2,0,2,4]) < 3)

all([2,0,2,4] < 3)

all([true, true, true, false])

false

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Execution through Context-Free Substitution

Convergence Test:

is convergent([1,2,3,8], [3,2,1,4], 3)

all(abs([1,2,3,8] - [3,2,1,4]) < 3)

all(abs([-2,0,2,4]) < 3)

all([2,0,2,4] < 3)

all([true, true, true, false])

false

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Shape-Generic Programming

2-dimensional convergence test:

is convergent(

(
1 2
3 8

)
,

(
3 2
1 7

)
, 3)

3-dimensional convergence test:

is convergent(

(

1 2
3 8

)
(

6 7
2 8

)
,

(

2 1
0 8

)
(

1 1
3 7

)
, 3)

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Shape-Generic Programming

2-dimensional convergence test:

is convergent(

(
1 2
3 8

)
,

(
3 2
1 7

)
, 3)

3-dimensional convergence test:

is convergent(

(

1 2
3 8

)
(

6 7
2 8

)
,

(

2 1
0 8

)
(

1 1
3 7

)
, 3)

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

The Power of With-Loops

I NO large collection of built-in operations
I Simplified compiler design

I INSTEAD: library of array operations
I Improved maintainability
I Improved extensibility

I Composition of building blocks
I Rapid prototyping
I High confidence in correctness
I Good readability of code

I General intermediate representation
for array operations

I Basis for code optimization
I Basis for implicit parallelization

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

The Power of With-Loops

I NO large collection of built-in operations
I Simplified compiler design

I INSTEAD: library of array operations
I Improved maintainability
I Improved extensibility

I Composition of building blocks
I Rapid prototyping
I High confidence in correctness
I Good readability of code

I General intermediate representation
for array operations

I Basis for code optimization
I Basis for implicit parallelization

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

The Power of With-Loops

I NO large collection of built-in operations
I Simplified compiler design

I INSTEAD: library of array operations
I Improved maintainability
I Improved extensibility

I Composition of building blocks
I Rapid prototyping
I High confidence in correctness
I Good readability of code

I General intermediate representation
for array operations

I Basis for code optimization
I Basis for implicit parallelization

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

The Power of With-Loops

I NO large collection of built-in operations
I Simplified compiler design

I INSTEAD: library of array operations
I Improved maintainability
I Improved extensibility

I Composition of building blocks
I Rapid prototyping
I High confidence in correctness
I Good readability of code

I General intermediate representation
for array operations

I Basis for code optimization
I Basis for implicit parallelization

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

SAC: High Productivity meets High Performance

Functional Programming with Curly Brackets ?

Design Rationale of SAC

Data-Parallel Functional Array Programming in SAC

Abstraction and Composition

Case Study: Generic Convolution

Compilation Challenge

Does it Work ? Some Experimental Evaluation

Summary and Conclusion

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Case Study: Convolution

Algorithmic principle:

Compute weighted sums
of neighbouring elements

Periodic boundary conditions (1-dimensional):

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Convolution Step in SAC

1-dimensional:

double [.] convolution_step (double [.] A)

{

R = with {

...

}

return R;

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Convolution Step in SAC

1-dimensional:

double [.] convolution_step (double [.] A)

{

R = A + rotate(1, A) + rotate(-1, A);

return R / 3.0;

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Convolution Step in SAC

1-dimensional:

double [.] convolution_step (double [.] A)

{

R = A + rotate(1, A) + rotate(-1, A);

return R / 3.0;

}

N-dimensional:

double [*] convolution_step (double [*] A)

{

R = A;

for (i=0; i<dim(A); i++) {

R = R + rotate(i, 1, A) + rotate(i, -1, A);

}

return R / tod(2 * dim(A) + 1);

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Convolution in SAC

Fixed number of iterations:

double [*] convolution (double [*] A, int iter)

{

for (i=0; i<iter; i++) {

A = convolution_step(A);

}

return A;

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Convolution in SAC

Variable number of iterations with convergence check:

double [*] convolution (double [*] A, double eps)

{

do {

A_old = A;

A = convolution_step(A_old);

}

while (! is_convergent(A, A_old , eps));

return A;

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Convolution in SAC

Variable number of iterations with convergence check:

double [*] convolution (double [*] A, double eps)

{

do {

A_old = A;

A = convolution_step(A_old);

}

while (! is_convergent(A, A_old , eps));

return A;

}

Convergence check:

bool

is_convergent (double [*] new , double [*] old , double eps)

{

return all(abs(new - old) < eps);

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Summary: Power of Abstraction

Functional array programming in SAC:

I High productivity software engineering and maintenance
I High confidence in correctness of code
I Programming by abstraction
I Programming by composition of abstractions
I High readability of code
I Entirely architecture- and resource-agnostic

Opportunities for compiler and runtime system:

I Aggressive machine-independent optimisation exploiting
compositional, side-effect-free semantics

I Machine-specific customisation and adaptation
I Automatic granularity control:

Customised adaptation to concrete computing architecture
I Automatic resource management:

memory, cores, nodes, energy, ...

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Summary: Power of Abstraction

Functional array programming in SAC:

I High productivity software engineering and maintenance
I High confidence in correctness of code
I Programming by abstraction
I Programming by composition of abstractions
I High readability of code
I Entirely architecture- and resource-agnostic

Opportunities for compiler and runtime system:

I Aggressive machine-independent optimisation exploiting
compositional, side-effect-free semantics

I Machine-specific customisation and adaptation
I Automatic granularity control:

Customised adaptation to concrete computing architecture
I Automatic resource management:

memory, cores, nodes, energy, ...
Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

SAC: High Productivity meets High Performance

Functional Programming with Curly Brackets ?

Design Rationale of SAC

Data-Parallel Functional Array Programming in SAC

Abstraction and Composition

Case Study: Generic Convolution

Compilation Challenge

Does it Work ? Some Experimental Evaluation

Summary and Conclusion

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Compilation Challenge

Advanced Compilation

SAC
Functional Array Programs

And achieve reasonably high performance....

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Compilation Challenge

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Challenge Taken: the SAC Compiler

Scanner / Parser

Code Generator
SMP Multi−Core

Code Generator
Sequential

Code Generator
MicroGrid

Code Generator
CUDA

Backend Compiler Backend Compiler Backend Compiler Backend Compiler
NVidia CmuTCANSI CANSI C

Parallelisation

De−Functionalisation

Memory Management

High−Level

Optimisation

Type Specialisation

Type Inference

Functionalisation

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Challenge Taken: the SAC Compiler

Scanner / Parser

Type Inference

Functionalisation
Function Inlining

Dead Code Removal
Common Subexpression Elimination

Copy Propagation
Algebraic Simplification
Loop Unrolling
Memory Reuse

Code Generator
SMP Multi−Core

Code Generator
Sequential

Code Generator
MicroGrid

Code Generator
CUDA

Backend Compiler Backend Compiler Backend Compiler Backend Compiler
NVidia CmuTCANSI CANSI C

Constant Folding and Propagation
Loop Invariant Removal

Array Elimination

With−Loop Folding
With−Loop Fusion
With−Loop Invariant Removal
With−Loop Unrolling
With−Loop Scalarisation
With−Loop Tiling
Automatic Array Padding
Index Vector Elimination

Parallelisation

De−Functionalisation

Memory Management

High−Level

Optimisation

Type Specialisation

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Challenge Taken: the SAC Compiler

Scanner / Parser

Static Code Analysis

Dynamic Reference Counting

Memory Reuse Optimisation

Data Reuse Optimisation

Advanced Aliasing Analysis

Address Aggregate Update Problem:

Type Inference

Functionalisation

Code Generator
SMP Multi−Core

Code Generator
Sequential

Code Generator
MicroGrid

Code Generator
CUDA

Backend Compiler Backend Compiler Backend Compiler Backend Compiler
NVidia CmuTCANSI CANSI C

Parallelisation

De−Functionalisation

Memory Management

High−Level

Optimisation

Type Specialisation

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Challenge Taken: the SAC Compiler

Compiler fact sheet:

I Around 300,000 lines of code
I Around 1000 files:

I + standard prelude
I + standard library

I Around 250 compiler passes
I Complete compiler construction toolkit as side product:

I re-used in other compiler research projects
I re-used in teaching compiler courses (Bachelor/Master)

Where’s the trick ?

I Purely functional semantics benefits large-scale program
transformation

I Stringent language–compiler co-design with one goal:
high performance in parallel execution of array programs

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Challenge Taken: the SAC Compiler

Compiler fact sheet:

I Around 300,000 lines of code
I Around 1000 files:

I + standard prelude
I + standard library

I Around 250 compiler passes
I Complete compiler construction toolkit as side product:

I re-used in other compiler research projects
I re-used in teaching compiler courses (Bachelor/Master)

Where’s the trick ?

I Purely functional semantics benefits large-scale program
transformation

I Stringent language–compiler co-design with one goal:
high performance in parallel execution of array programs

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

The SAC Project

International partners:

I University of Kiel, Germany (1994–2005)

I University of Toronto, Canada (since 2000)

I University of Lübeck, Germany (2001–2008)

I University of Hertfordshire, England (2003–2012)

I University of Amsterdam, Netherlands (since 2008)

I Heriot-Watt University, Scotland (since 2011)

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

SAC: High Productivity meets High Performance

Functional Programming with Curly Brackets ?

Design Rationale of SAC

Data-Parallel Functional Array Programming in SAC

Abstraction and Composition

Case Study: Generic Convolution

Compilation Challenge

Does it Work ? Some Experimental Evaluation

Summary and Conclusion

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Experiment: SAC on x86 Multi-Core Multi-Processor

Machine:

I 4 AMD Opteron 8356 processors
I 4 fully-fledged cores each

Unsteady Shock Wave Simulation:

the third order Runge-Kutta TVD method and first order piecewise constant
reconstruction.

Compiler Version Arguments

Sac2C
Sac2C 16094 -L fluid -maxoptcyc 100 -O3 -mt

-DDIM=2 -nofoldparallel -maxwlur 20stdlib 1120
Sun Studio
Compiler-f90

8.3 Linux i386
Patch 127145-01

-autopar -parallel -loopinfo -reduction
-O3 -fast

The computer used to perform these benchmarks is a 4xQuad-Core (16 core)
AMD OpteronTM 8356 with 16GB of RAM. Both the SaC and Fortran source
code is available at http://sac-home.org.

As the Fortran compiler uses OpenMP for parallelization, environment vari-
ables where set to control the runtime behaver of the Fortran code. Several
di↵erent combinations where tried however these made a negligible di↵erence to
the runtime of the program. The options that produced the fastest runtimes, and
therefore where used for the main benchmarking, were: OMP_SCHEDULE=STATIC,
OMP_NESTED=TRUE and OMP_DYNAMIC=FALSE.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
50

100

150

200

250

300

350

400

450

500

550

600

SAC2C

Sun Fortran

Number of Cores

W
a
ll

C
lo

ck
 t

im
e
 (

se
co

n
d
s)

Fig. 4. Wall clock time of a 1000 time step simulation on a 400x400 grid.

It can be seen in Figure 4 that SaC was much slower than the Fortran when
run on just one core. However the Fortran code did not scale well with the

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Experiment: SAC on Graphics Accelerator

Machine:

I NVidia Tesla GPU

Lattice-Boltzmann:

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 256 384 512 640 768 896 1024 1152 1280 1408 1536

Sp
ee

du
p

Problem Size

LatticeBoltzmann CUDA vs. SaC Speedups (Tesla)
10 Steps
25 Steps
50 Steps

100 Steps
200 Steps

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Experiment: SAC on Multiple Graphics Accelerators

Machine:

I 8 NVidia GeForce GTX 580

Convolution kernel:

I 8000x8000 matrix, 10000 iterations
I requires data exchange between GPGPUs after each iteration

1 2 4 8
0

1

2

3

4

5

1

1.82

2.96

3.9

GPGPUs

sp
ee

d
u

p

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Experiment: SAC on Heterogeneous System

Machine:

I 2 quad-core Intel Xeon processors

I 2 NVidia GTX480 GPUs

Convolution kernel:

2 CPUs 1 GPU 2 CPUs + 1 GPU 2 CPUs + 2 GPUs
0

4

8

12

16

20

24

4

13

16

22

sp
ee

d
u

p
vs

1
co

re

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Experiment: SAC on Ultra Sparc T3-4 Server

Machine:

I 4 Oracle Ultra Sparc T3 processors
I 4× 16 = 64 cores
I 4× 16× 8 = 512 hardware threads

Matrix multiplication:

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 1 2 4 8 16 32 64 128 256 512

Sp
ee

du
p

Hardware threads

Matrix Multiplication:
8192 x 8192
4096 x 4096
2048 x 2048

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

SAC: High Productivity meets High Performance

Functional Programming with Curly Brackets ?

Design Rationale of SAC

Data-Parallel Functional Array Programming in SAC

Abstraction and Composition

Case Study: Generic Convolution

Compilation Challenge

Does it Work ? Some Experimental Evaluation

Summary and Conclusion

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Summary

Language design:

I Functional state-less semantics with C-like syntax

I Data parallel array programming

I Abstraction and composition

I Shape-generic programming

I Index-free programming

Language implementation:

I Fully-fledged compiler

I Automatic parallelisation

I Automatic memory management

I High-level program transformation

I Large-scale machine-independent optimisation

I Performance competitive with the “real” curly brackets!!

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Summary

Language design:

I Functional state-less semantics with C-like syntax

I Data parallel array programming

I Abstraction and composition

I Shape-generic programming

I Index-free programming

Language implementation:

I Fully-fledged compiler

I Automatic parallelisation

I Automatic memory management

I High-level program transformation

I Large-scale machine-independent optimisation

I Performance competitive with the “real” curly brackets!!

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

The End

Questions ?

Check out www.sac-home.org !!

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Bonus Slides: Input and Output

Example:

import StdIO: all;

import ArrayIO: all;

int main()

{

a = 42;

b = [1,2,3,4,5];

errcode , outfile = fopen("filename", "w");

fprintf(outfile , "a = %d\n", a);

fprint(outfile , b);

fclose(outfile);

return 0;

}

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

Digression: Input and Output

Example functionalised by compiler:

FileSystem , int main(FileSystem theFileSystem)

{

a = 42;

b = [1,2,3,4,5];

theFileSystem , errcode , outfile

= fopen(theFileSystem , "filename", "w");

outfile = fprintf(outfile , "a = %d\n", a);

outfile = fprint(outfile , b);

theFileSystem = fclose(theFileSystem , outfile);

return(theFileSystem , 0);

}

FileSystem and File are uniqueness types.

Clemens Grelck, University of Amsterdam SAC: Functional Array Programming with Curly Brackets

	Functional Programming with Curly Brackets ?
	Design Rationale of SAC
	Data-Parallel Functional Array Programming in SAC
	Abstraction and Composition
	Case Study: Generic Convolution
	Compilation Challenge
	Does it Work ? Some Experimental Evaluation
	Summary and Conclusion

