
Examination 
Model Based Testing 

DIT848 / DAT260 
  
 

Software Engineering and Management 
Chalmers | University of Gothenburg 

 
Monday August 26, 2013 

 
 

Time 14:00-18:00 
Location Lindholmen 
Responsible teacher Gerardo Schneider 
Phone  0700 44 18 33 
Tasks 5 (20 pts each) 
Total number of pages 10 (including this page) 
Max score 100 pts   
Grade limits 3 (G): at least 50 pts (see more details below) 
 4: at least 65 pts (see more details below) 

5 (VG): at least 80 pts (see more details below) 
 

ALLOWED AID:  
 

• Books on testing  
• All lecture notes (including printouts of lectures’ slides) 
• Students own notes 
• English dictionary 
• NOT ALLOWED: Any form of electronic device (dictionaries, agendas, computers, 

mobile phones, etc.) 
 
 
PLEASE OBSERVE THE FOLLOWING: 
 

• Motivate your answers (a simple statement of facts not answering the question is considered 
to be invalid); 

• Start each task on a new paper; 
• Sort the tasks in order before handing them in; 
• Write your student code on each page and put the number of the task on every paper;  
• Read carefully the section below “ABOUT THE FORMAT OF THE EXAM”. 

 
 



 2 

ABOUT THE FORMAT OF THE EXAM: 
 
The exam consists of 5 tasks, each one concerned with a specific part of the course content.  
Each task is worth 20 points. In order to reach the level to pass with 3 (G) you need at least 50 points 
out of the total, and at least 6 points per task. To pass with 4 you need at least 65 points out of the 
total, and at least 8 points per task.  
 
In order to pass with distinction (5/VG) you need to reach at least 80 points out of the total, and you 
must score at least 14 points per task.  
 
IMPORTANT: Note that you should have a minimum number of points per task in order to 
pass, so avoid letting unanswered tasks. 



 3 

 
Task 1 - Test in general 
 
1) Below you will find 10 statements about different issues related to testing. Determine whether 

the statements are true or false. En each case justify your answer giving clear arguments 
to defend your judgment (if the answer is false provide the correct fact; if it is true briefly 
explain why). Note that some of the statements are concerned with hypothetical situations 
where a failure is said to be found by a specific testing technique (e.g., unit or integration 
testing); in those cases a “true” answer is the one corresponding to the case when the error can 
be detected with the given technique in a first instance (and “false” otherwise). Your answer 
will not be considered complete if you do not justify it. (20 pts - 2 pts each) 

 
1) Acceptance test is always done in the real environment, by the user alone without 

interaction with the testers. 
2) Regression test should be done immediately after finishing integration test, before any big 

modification of the code. 
3) There are static and dynamic verification techniques. Static techniques are by definition not 

applied to the source code but to a model of the system. 
4) When testing a software simulating a calculator (like the one developed during the 

assignments), a tester finds that the result of a partial computation of the addition operation 
was stored sometimes on a variable called sum and sometimes on another called add. This 
was found when applying unit test. 

5) It is not possible to apply white box testing to systems developed in functional programming 
languages (e.g., written in Haskell) due to the use of recursion. 

6) You can only test programs written in functional programming using QuickCheck (or 
similar property-based testing tools). 

7) For some unknown reasons an Internet application becomes very slow after a user logs in 
and logs out successively more than 15 times without any further activity in between. This is 
found when performing system test. 

8) Accidentally, an assignment inside a loop was deleted by the programmer. This assignment 
updated the control variable of the loop condition, so the variable remained with the same 
value as when the loop was entered the first time, making impossible to quit the loop. This 
was detected when performing unit test and checking for statement coverage. 

9) In order to test software usability you need to have a full implementation of the system or at 
least an implementation of the user interfaces (eventually having mock modules to 
implement the missing functionalities). 

10) The V model is a graphical representation of the relationship between development and 
testing, and it does not explicitly suggests that testing should be performed in a waterfall 
manner. 

 
 

 
 
 

 
  



 4 

Task 2 - State machines  
 
A turnstile, a device used to control access to places like subways, is a gate 
with three rotating arms at waist height, one across the entryway (see picture 
in the right). Initially the arms are locked, barring the entry, preventing 
customers from passing through. Depositing a token in a slot on the turnstile 
unlocks the arms, allowing a single customer to push through. After the 
customer passes through, the arms are locked again until another token is 
inserted. 
The turnstile could be modeled as a simple Finite-State Machine 
(FSM) accepting inputs that affect its states: putting a token in the slot 
(token) and pushing the arm (push). In the locked state, pushing on the arm 
has no effect; no matter how many times the input push is given it stays in 
the locked state. Putting a token in, that is giving the machine a token input, shifts the state 
from Locked to Unlocked. In the unlocked state, putting additional tokens in has no effect; that is, 
giving additional token inputs does not change the state. However, a customer pushing through the 
arms, giving a push input, shifts the state back to Locked. 
 
1) Write a FSM representing the behavior of a turnstile as described above. (6 pts) 

 
2) Give an EFSM that models a turnstile with the following (more complex) specification.  

Assume now that the turnstile, besides accepting a token, also accepts normal coins (with 
values 1, 5 and 10 SEK) and credit cards. The price is 18 SEK. When paying with tokens the 
turnstile behaves as before. 
 
When paying with coins the customer should add enough coins to cover the price to unlock 
the arm. The turnstile can give back money up to 2 SEK (that is, if more than 20 SEK are 
inserted into the machine then only 2 SEK are given back, the rest remains inside the 
machine). This complex turnstile has a timeout: if not enough money has been inserted 
within 20 seconds then the machine gives the money back. Besides, there is an additional 
button return that when pushed allows the user to get all the inserted money back, provided 
this is done before the required amount is inserted (at least 18 SEK) and before the timeout. 
In case of timeout or when pressing the return button the arm remains locked. 
 
When paying with credit card, the machine behaves as expected, that is: 1) The customer 
must enter the credit card; 2) The machine ask for the pin; 3) If the pin is correct the machine 
beeps and ask the user to get the card, and after getting the card the arm is unlocked and the 
user can proceed; 4) If the pin is incorrect the machine gives the message “wrong pin” 
allowing the user to enter the pin 2 more times, and act as in 3) above in case the pin is 
correct or gives the card back otherwise. In case of payment with credit card there is a 
timeout of 30 seconds after which the card is automatically returned to the user (that is a 
correct pin should be given within 30 seconds after inserting the card). 
 
After successful payment and when the user push the arm to pass, the machine returns to the 
locked state; similarly in case of timeout and after giving money back when pressing the 
return button. The return button has no effect if pressed when paying with tokens or credit 
card. (14 pts) 

 
Note: Draw new machines for each exercise separately. Be sure you provide meaningful names 
for of each action, variable, state, etc., and provide a short explanation of each in case of 
ambiguity.  



 5 

  
Task 3 - White box testing, coverage analysis 
 
Let the following FSM represent the model of a SUT:  
 

A 

H 

D 
logout 

F 

E 

C B 
login ask_ride p_not found 

G 
sms_p sms_d 

p_found logout 

com_d 

check_db 

 
 
NOTE: A is the initial and the final state. 
 
In what follows there are 10 statements on different coverage criteria issues or situations related to 
the above FSM. Determine whether the statements are true or false. In each case justify your 
answer giving clear arguments to defend your judgment. In case of a false answer give the 
sequence of actions to be performed to satisfy the corresponding criteria. In case of a true 
answer, briefly explain why it is the case. Note that your answer will not be considered complete 
if you don’t justify it. (20 pts – 2 pts each) 
 

1) The following test cases achieve a full coverage according to the All-states transition-based 
coverage criteria:  
 
  - login, ask_ride, p_not_found, com_d, logout,  
  - p_found, sms_d, sms_p, logout 
 

2) The following test cases achieve full coverage according to the All-one-loop-paths 
transition-based coverage criteria: 
 
 - login, ask_ride, check_db, p_not_found, com_d, logout; 
 - login, ask_ride, p_found, sms_d, sms_p, logout 
 

3) The test cases performed for the All-one-loop-paths above (cf. exercise b) also achieve 
100% coverage according to the All-transitions transition-based coverage criteria. 
 

4) If the FSM is modified in such a way that two loops are added, one in state D (labeled 
wait_d) and the other in F (labeled wait_f), the following test case would achieve full 
coverage according to the All-one-loop-paths transition-based coverage criteria: 
 
 - login, ask_ride, check_db, p_not_found, wait_d, com_d, logout, login, ask_ride, p_found, 
wait_f, sms_d, sms_p, logout 
 

5) The control-flow oriented Decision/Condition Coverage (D/CC) criteria is not applicable to 
the FSM above. 
 



 6 

6) It doesn't make sense to apply data-coverage criteria in the above FSM as FSMs are control-
oriented and there is no data. 
 

7) If the arrows of the transitions labeled with login and ask_ride are reversed, then all the 
states are unreachable and thus the application of any transition-based coverage criteria 
would not give any meaningful test case (for the test case where no action is executed). 
 

8) When seeing the FSM as a digraph we can claim that it is Eulerized. 
 

9) Assuming each action in the FSM takes 1 time unit, the minimal time to test it in parallel 
would be 6 time units, using 2 machines. 
 

10) In order to test combination of actions of length 2 in the FSM we can apply the de Bruijn 
algorithm. In order to do so we would first need to create the dual graph which will contain 
10 states labeled as follows: login, ask_ride, p_not_found, com_d, logout, p_found, sms_d, 
logout, check_ db, and sms_p. 
 



 7 

  
Task 4 – MBT / ModelJUnit  
 
You will find below 10 statements and situations about different issues related to model-based 
testing (MBT) and ModelJUnit. Determine whether the statements are true or false. In each 
case justify your answer giving clear arguments to defend your judgment (if the answer is false 
provide the correct fact, if it is true write a short reason showing you understand why it is the 
case). Note that your answer will not be considered complete if you don’t justify it.   
(20 pts – 2 pts each) 
 
1) In MBT, unless test cases are transformed into concrete ones it is not possible to have an 

automatic generation (and execution) of test cases from a model to perform online testing. 
2) When using transition-based models in MBT, it is advisable that all transitions have labels 

(actions). 
3) It is not possible to get online (automatic) test extraction from a model of a telephone vocal 

service (like the Qui-Donc example seen in the lectures) using ModelJUnit unless you write an 
adapter. 

4) In ModelJUnit it is possible to implement an adapter either by modifying the EFSM model or 
by writing a separate module that interacts with the model and the SUT. 

5)  ModelJUnit allows to represent EFSMs by explicitly describing all the states and all the 
transitions between the states. It is possible to generate EFSMs with unbounded or infinite 
behavior (that is, to generate test cases that might not terminate). 

6) Assume you are writing an EFSM as a model to be used to extract test cases for the 
implementation of a queue to be used as an external module to be called by a software 
implementing a ticket system. You don't have access to the implementation and only know the 
interface. Your model should definitively generate test cases to check that the queue behaves as 
expected (e.g., that the first in the queue is indeed served first). 

7) When a tester using MBT was asked why his models made references to variables in the code, 
he answered that it was common practice in MBT as it is good to test the values of variables of 
a program. The answer of the tester is correct (answer according to your understanding of MBT 
based on the definition, underlying principles of the technique, etc.). 

8) EFSM is a transition-based notation and it is not possible to be used to test data-oriented 
systems. 

9) In MBT you can claim that you have achieved 100% state coverage in your model if the test 
cases automatically extracted from your model achieve 100% statement coverage at the code 
level. 

10) When using ModelJUnit it is not possible to write different models (at different abstraction 
levels) as this will be confusing for the tool. 

	  



 8 

 Task 5 – Property-based testing and QuickCheck  
 
1) Assume that you have implemented a Module Stackl that includes an implementation of stacks 

in Haskell with some additional operations besides the standard ones. The module introduces a 
parameterized data type, Stackl, such that for every type a, we have the type Stackl a of stacks of 
as, e.g. a Stackl Int is a stack holding integers. This stack implementation is pure, i.e. there are 
no side effects. As a consequence, the functions that manipulate stacks always return new stacks 
as their result, instead of modifying stacks in place. The interface for this module includes the 
following (standard) functions: 
 
 push :: a -> Stack a -> Stack a 
 pop :: Stack a -> Stack a 
 top :: Stack a -> a 
 isEmpty :: Stack a -> Bool 
 empty :: Stack a 
 
The function push takes an element x and a stack s, and produces a new stack with x as its 
topmost element, followed by the elements of s. The constant empty represents the empty stack, 
while the function isEmpty simply checks whether its argument is the empty stack or not. The 
functions pop and top are used to take a stack apart: pop pops off an element from its argument, 
returning the resulting stack, and top returns the topmost element in its argument stack (without 
changing the stack). Their behaviour is undefined when applied to the empty stack. 
 
Besides these standard operations, the module contains the following additional functions: 
 
 pushl :: Stack a -> [a] -> Stack a 
 stack2list :: Stack a -> [a] 
 
The function pushl takes a stack s and a list of elements l of type a and returns the stack where 
all the elements in the list l has been pushed on top of the stack s (the head of the list is pushed 
first and then the operation proceed recursively to push the rest of the list). The operation 
stack2list takes a stack s and returns the list of all the elements in the stack, inserting each 
element taken from the stack in the head of the list (the top of the stack will be the last element 
of the list).  
 
You can assume that besides the standard operations on lists you also have available the 
following functions on lists:  
 
sorted :: [a] -> Bool 
null :: [a] -> Bool  
maximum :: [a] -> a 
length :: [a] -> Int 
++ :: [a] -> [a] -> [a] 
sort :: [a] -> [a]  
  
sorted returns true if a list is sorted (in increasing order), null returns true if the list has no 
elements, maximum returns the maximum element of a list, and length returns the size of the list. 
sort returns the same list given as parameters but sorted in increasing order, and finally, ++ 
concatenates two lists where the new list is composed of the first followed by the second one. 
(Though not explicitly written in the types, it is assumed that sorted, sort and maximum operates 
on types where an order is defined.) 



 9 

 
 
Provide a solution to the following questions/situations regarding QuickCheck properties 
for the above module. (12 pts – 3 pts each) 
 

a. A programmer wants to check that the pushl operation works well when checking 
the top element of the concatenation of two non-empty lists after being sorted, 
and writes the following property: 
 
prop_top_sort s l1 l2  =   
                           not (null l2) ==>   top (pushl s (sort (l1 ++ l2))) == maximum(l2)  
 
Is the property correct? If not say why and provide a correct property. 
 

b. Complete the property below, such that it expresses what happens when pushing 
two non-empty lists into a stack (hint: use the concatenation operation): 
 
prop_push_two_lists s l1 l2  =  (pushl (pushl s l1) l2 ) ==  … 
 

c. Write a property prop_top_sorted s specifying what the top element of the stack s 
is when s has been created by inserting a non-empty sorted list into it, i.e. what 
should top s be equal to under the precondition not (isEmpty s) && sorted 
(stack2list s). 
 
prop_top_sorted s  = … 
 

d. A programmer wants to write a property about the size of a list that has been 
obtained from a stack after pushing a list into it (that is, about the following:   
length (stack2list (pushl s l)). He writes the following property: 
 
prop_length s l  =  length (stack2list (pushl s l)) == length (l + s) 
 
Is the property correct? If not say what is wrong and give a correct property. 
 
 

2) A tester has to write an implementation of a generator that generates non-empty lists of integers 
of arbitrary size satisfying the following constraints: 
 
1. The list is sorted. 
2. The first element of the list is a random number between 1 and 100. 
3. Each element of the list is randomly generated in such a way that the element is bigger than 
the previous one and it differs at most in 100 from the previous one.  
 
That is, if [a1, a2, …, an] is a list generated according to the above specification, then it should 
satisfy that: 
 

0< a1 <= 100, and   
0< ai+1 - ai <= 100 (for 0<i<n-1) 

 
The following is a valid example of a generated list: [87, 122, 123]. On the other hand, the lists 
[2, 104],  [105, 106, 110] and [77, 56, 139, 150] are not valid. 



 10 

 
The code below is supposed to be an implementation of the generator described above: 
 
import Test.QuickCheck 
import Data.List 
genListSorted :: Gen Int 
genListSorted = do 

intlist <- listOf1 ( elements [1..100] ) 
return ( tail ( map product ( inits intlist ) ) ) 
 

main = sample genListSorted 
 

The above generator is not completely correct. Explain what are the errors and modify the 
code above so it is correct.  (8 pts) 
 
NOTE: In case you are not familiar with some of the Haskell functions used in the code above, 
this is a description: 
 
listOf1 :: Gen a -> Gen [a]  - Generates a non-empty list of random length.  
 
elements :: [a] -> Gen a  - Generates one of the given values. The input list must be non-empty.  
 
inits :: [a] -> [[a]]  - The inits function returns all initial segments of the argument, shortest first. 
For example,  inits "abc" == ["","a","ab","abc"] 
 

product :: Num a => [a] -> a  - The product function computes the product of a finite list of 
numbers.  
 
tail :: [a] -> [a]  - Extracts the elements after the head of a list, which must be non-empty.  
 
map :: (a -> b) -> [a] -> [b]  - map f xs is the list obtained by applying f to each element of xs, i.e.,  
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] 
map f [x1, x2, ...] == [f x1, f x2, ...] 

 
 
 

 
 


